Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parRenée Rodriguez Modifié depuis plus de 10 années
1
Mathématiques classe de seconde professionnelle
Fluctuations d’une fréquence selon les échantillons,probabilités: Simulation d’un lancer de dé. Exemple de thématique choisi: Vie sociale et loisirs: Jouer avec le hasard. Auteur : Pascal Leroy
2
Classe de seconde professionnelle 1. STATISTIQUE ET PROBABILITES 1
Classe de seconde professionnelle 1.STATISTIQUE ET PROBABILITES 1.2 Fluctuations d’une fréquence selon les échantillons, probabilités: QUITTER
3
Simulation d’un lancer de dé.
Pour effectuer cette simulation, nous allons utiliser le tableur. QUITTER
4
PARTIE A Dans la cellule A1, entrer la formule =ALEA() puis appuyer plusieurs fois sur la touche F9. Qu’observe t’on? Dans la cellule B1,entrer la formule =6*ALEA() puis appuyer plusieurs fois sur la touche F9. Qu’observe t’on? Dans la cellule C1,entrer la formule =ENT(6*ALEA()) puis appuyer plusieurs fois sur la touche F9. Quelles valeurs obtient-on? Dans la cellule D1,entrer la formule =ENT(6*ALEA())+1 puis appuyer plusieurs fois sur la touche F9. Justifier que l’ordinateur simule un lancer de dé. QUITTER
5
c) Quelle est la taille de l’échantillon ainsi obtenu?
PARTIE B Simulation a) Effacer le contenu de toutes les cellules puis entrer en A1 la formule =ENT(6*ALEA())+1. b) Cliquer sur la cellule A1, puis recopier la formule jusqu’à la cellule A10 à l’aide de la poignée de recopie (se placer en bas à droite de la cellule et obtenir une croix noire). c) Quelle est la taille de l’échantillon ainsi obtenu? QUITTER
6
2) Comparaison de 3 échantillons de même taille.
PARTIE B (suite) 2) Comparaison de 3 échantillons de même taille. a) Recopier la formule dans la plage de cellules allant de B1 à C10 par le même procédé. b) Préparer le tableau ci-dessous dans les colonnes E,F,G,…….K de la manière suivante: QUITTER
7
c) En F3 entrer la formule =NB.SI($A$1:$A$10;F2)/10
PARTIE B (suite) c) En F3 entrer la formule =NB.SI($A$1:$A$10;F2)/10 Cette fonction permet de compter le nombre de fois qu’apparaît le contenu de la cellule F2 (c’est à dire 1) dans la plage de données correspondant à la colonne A. d) Quelle formule doit on alors entrer dans la cellule F4 pour obtenir la fréquence d’apparition du 1 dans la colonne B ? e) Compléter le tableau. QUITTER
8
Représentation graphique
PARTIE B (suite) Représentation graphique a) Sélectionner la plage de cellules allant de F2 à K5. Ouvrir l’assistant graphique puis sélectionner « nuage de points reliés par une courbe ». b) Une fois le graphique obtenu, appuyer plusieurs fois sur F9 pour obtenir d’autres simulations et observer les résultats. c) Quel est le plus grand écart de valeurs observé? QUITTER
9
1) Echantillon de taille 100
PARTIE C 1) Echantillon de taille 100 a) Sur la feuille 2 du classeur, créer trois échantillons de taille 100 dans les colonnes A,B,C, puis reporter les fréquences dans un tableau similaire à celui de la partie B. b) Créer un graphique permettant de comparer les trois distribution de fréquence. c) Simuler d’autres séries à l’aide de la touche F9. d) Quel est le plus grand écart de valeurs observé? QUITTER
10
2) Echantillon de taille 1000
PARTIE C 2) Echantillon de taille 1000 a) Sur la feuille 3 du classeur, reprendre le même procédé pour des échantillons de taille 1000. b) Quel est le plus grand écart de valeurs observé? PARTIE D Insérer une 4ème feuille dans le classeur et y recopier les trois graphiques obtenus précédemment. Dans quel cas la fluctuation d’échantillonnage est elle la plus importante? Que peut on en conclure quant à la taille de l’échantillon? Vers quelle valeur théorique se rapproche t’on lorsque la taille de l’échantillon est grande? QUITTER
11
QUITTER
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.