La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Trigonométrie.

Présentations similaires


Présentation au sujet: "Trigonométrie."— Transcription de la présentation:

1 Trigonométrie

2 Objectifs: - Ecrire les relations entre le cosinus, le sinus et la tangente d’un angle aigu et les deux longueurs d’un triangle rectangle. - Utiliser la calculatrice pour déterminer un angle aigu ou le cosinus, le sinus ou la tangente d’un angle aigu. - Calculer, dans un triangle rectangle, un angle ou la longueur d’un côté en utilisant la trigonométrie aaaaaa 2

3 Le mot vient du grec "trigone" (triangle) et "metron" (mesure).
On attribue à Hipparque de Nicée (-190 ; -120) les premières tables trigonométriques. Elles font correspondre l’angle au centre et la longueur de la corde interceptée dans le cercle. Le grec Claude Ptolémée (85 ; 165) poursuit dans l’Almageste les travaux d’Hipparque avec une meilleure précision et introduit les premières formules de trigonométrie. Plus tard, l’astronome et mathématicien Regiomontanus, de son vrai nom Johann Müller développe la trigonométrie comme une branche indépendante des mathématiques. Il serait à l’origine de l’usage systématique du terme sinus.

4 Vocabulaire du triangle rectangle
Avant d’aborder tout problème de trigonométrie, il faut savoir nommer les côtés d’un triangle rectangle. Ici on appelle α la mesure de l ’angle BÂC dans le triangle rectangle en C. B Hypoténuse (c’est le plus grand des côtés, c’est aussi le côté opposé à l’angle droit.) Côté opposé à α α A C Côté adjacent à α 4

5 II. Trois formules trigonométriques
Côté adjacent à α α Hypoténuse Côté opposé à α α Hypoténuse Côté adjacent à α Côté opposé à α α

6 Remarques : - sin se lit « sinus », cos « cosinus » et tan « tangente » -Pour s’aider à retenir ces trois formules, on peut retenir le « célèbre » mot Soh Cah Toa

7 III. Applications Calcul de la longueur d’un côté connaissant
un angle et un autre côté 41° A C Calculer la longueur de AB. Hyp. Méthode: Côt. Adj. ? 1. On nomme les côtés du triangle. 23 cm 2. On repère le côté que l’on cherche et le côté que l’on connaît, en les soulignant par exemple. B Côt. Opp. 3. On choisit la formule dans laquelle il y a les deux côtés soulignés. Comme ABC est rectangle en C, on a: 7

8 Calculer la longueur de AB
41° A C Calculer la longueur de AB Hyp. Méthode: ? 1. On nomme les côtés du triangle Côt. Adj. 2. On repère le côté que l’on cherche et le côté que l’on connaît, en les soulignant par exemple. 23 cm Côt. Opp. B 3. On choisit la formule dans laquelle il y a les deux côtés soulignés. Comme ABC est rectangle en C, on a: 4. On remplace dans la formule tout ce que l’on connaît. 5. On fait un produit en croix et on calcule AB 8

9 2) Calcul de la mesure d’un angle connaissant la longueur connaissant la longueur de deux côtés
Calculer l’angle BÂC. ? Hyp. Méthode: 1. On nomme les côtés du triangle. 26 cm 2. On repère les deux côtés que l’on connaît, en les soulignant. Côt. Adj. 10 cm B C 3. On choisit la formule dans laquelle il y a les deux côtés soulignés. Côt. Opp. Comme ABC est rectangle en B, on a:

10 Comme ABC est rectangle en B, on a:
Calculer l’angle BÂC. A Méthode: Hyp. ? 1. On nomme les côtés du triangle. 26 cm 2. On repère les deux côtés que l’on connaît, en les soulignant. Côt. Adj. 10 cm 3. On choisit la formule dans laquelle il y a les deux côtés soulignés. B C Côt. Opp. Comme ABC est rectangle en B, on a: 4. On remplace dans la formule tout ce que l’on connaît. 5. Avec la calculette, on tape: tan -1 (10/26)=


Télécharger ppt "Trigonométrie."

Présentations similaires


Annonces Google