La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Chapitres 5,6,9 : La mesure et la géométrie. Une hypothèse Une hypothèse est un énoncé mathématique que nous proposons comme vrai sur la base des observations.

Présentations similaires


Présentation au sujet: "Chapitres 5,6,9 : La mesure et la géométrie. Une hypothèse Une hypothèse est un énoncé mathématique que nous proposons comme vrai sur la base des observations."— Transcription de la présentation:

1 Chapitres 5,6,9 : La mesure et la géométrie

2 Une hypothèse Une hypothèse est un énoncé mathématique que nous proposons comme vrai sur la base des observations faites, mais que personne na pu prouver. Une hypothèse est un énoncé mathématique que nous proposons comme vrai sur la base des observations faites, mais que personne na pu prouver. Une hypothèse est utilisée constamment avec des preuves de la géométrie. Une hypothèse est utilisée constamment avec des preuves de la géométrie.

3 Les droites sécantes et les segments de droite sécants Quand deux droites se coupent, elles forment quatre angles. Quand deux droites se coupent, elles forment quatre angles. Les angles opposés par le sommet ont la même mesure. Les angles opposés par le sommet ont la même mesure. Deux angles dont la somme est de 180° sont supplémentaires. Deux angles dont la somme est de 180° sont supplémentaires. Deux angles dont la somme est de 90° sont complémentaires. Deux angles dont la somme est de 90° sont complémentaires.

4 Les droites perpendiculaires Les droites perpendiculaires sont les droites qui coupent à un angle droit (90°) vers le haut ou vers le bas. Les droites perpendiculaires sont les droites qui coupent à un angle droit (90°) vers le haut ou vers le bas. Les droites perpendiculaires ont des pentes qui sont les réciproques négatives aux eux-mêmes (voir lexemple au tableau) Les droites perpendiculaires ont des pentes qui sont les réciproques négatives aux eux-mêmes (voir lexemple au tableau)

5 Les droites parallèles Les droites parallèles sont les droites qui ne coupent jamais. Les droites parallèles sont les droites qui ne coupent jamais. Les droites parallèles ont les mêmes pentes (chapitre 2) mais les ordonnées à lorigine différentes (des points de départ différents) Les droites parallèles ont les mêmes pentes (chapitre 2) mais les ordonnées à lorigine différentes (des points de départ différents)

6 Des théorèmes des droites parallèles Quand une droite coupe des droites parallèles, 3 relations particulières entre les angles formés (voir la page 259): Quand une droite coupe des droites parallèles, 3 relations particulières entre les angles formés (voir la page 259): 1. Les angles alternes internes (la forme en Z) 2. Les angles correspondants (la forme en F) 3. Les angles supplémentaires internes (la forme en C)

7 Les préfixes communs Les préfixes sont toujours attachés au commencement du mot et ils veulent dire un sens spécifique. Les préfixes sont toujours attachés au commencement du mot et ils veulent dire un sens spécifique. Tri = 3 Tri = 3 Tetra = 4 Tetra = 4 Penta = 5 Penta = 5 Hexa = 6 Hexa = 6 Hepta = 7 Hepta = 7 Octa = 8 Octa = 8 Nona = 9 Nona = 9 Deca = 10 Deca = 10 etc etc

8 Un polygone Un polygone a tous des côtés congruents et tous des angles congruents. Un polygone a tous des côtés congruents et tous des angles congruents. Les polygones peuvent être régulier ou irrégulier. Les polygones peuvent être régulier ou irrégulier. Les polygones régulier ont la symétrie de rotation et symétrie de la réflexion. Les polygones régulier ont la symétrie de rotation et symétrie de la réflexion. Voici la différence principale entre les polygones régulier et irrégulier. Voici la différence principale entre les polygones régulier et irrégulier.

9 Les exemples des polygones régulier communs Un trigone régulier (un triangle équilatéral Un trigone régulier (un triangle équilatéral Un tétragone régulier (un carré) Un tétragone régulier (un carré) Un pentagone régulier (pentagone) Un pentagone régulier (pentagone) Une hexagone régulier Une hexagone régulier Un octogone régulier Un octogone régulier

10 Les préfixes du système métrique Les préfixes fréquemment utilisés sont: Les préfixes fréquemment utilisés sont: Kilo- (k) = 1000 Kilo- (k) = 1000 Hecto- (h) = 100 Hecto- (h) = 100 Déca- (da) = 10 Déca- (da) = 10 Base- = 1 Base- = 1 Déci- (d)= 1/10 = 0.1 Déci- (d)= 1/10 = 0.1 Centi- (c) = 1/100 = 0.01 Centi- (c) = 1/100 = 0.01 Milli- (m) = 1/1000 = Milli- (m) = 1/1000 = 0.001

11 Convertir des mesures entre unités métriques Pour convertir une mesure en une mesure qui utilise un préfixe différent, tu peux utiliser lescalier métrique. Pour convertir une mesure en une mesure qui utilise un préfixe différent, tu peux utiliser lescalier métrique.

12 Comment utiliser lescalier métrique #1 Quand tu descends lescalier, tu convertis une unité en une unité plus petite. Quand tu descends lescalier, tu convertis une unité en une unité plus petite. Alors, tu multiplies le nombre donné par 10 nombre de marches Alors, tu multiplies le nombre donné par 10 nombre de marches

13 Un exemple de conversion #1 Pour convertir 6 km en mètres: Pour convertir 6 km en mètres: 6 km = (6 x 10 3 ) m 6 km = (6 x 10 3 ) m 6 km = (6 x 1000) m 6 km = (6 x 1000) m 6 km = 6000 m 6 km = 6000 m

14 Comment utiliser lescalier métrique #2 Quand tu montes lescalier, tu convertis une unité en une unité plus grande. Quand tu montes lescalier, tu convertis une unité en une unité plus grande. Alors, tu divises le nombre donné par 10 nombre de marches Alors, tu divises le nombre donné par 10 nombre de marches

15 Un exemple de conversion #2 Pour convertir 1200 mL en litres: Pour convertir 1200 mL en litres: 1200 mL = (1200 ÷ 10 3 ) L 1200 mL = (1200 ÷ 10 3 ) L 1200 mL = (1200 ÷ 1000) L 1200 mL = (1200 ÷ 1000) L 1200 mL = 1.2 L 1200 mL = 1.2 L

16 Le périmètre Le périmètre est la distance totale autour de la figure. Le périmètre est la distance totale autour de la figure. Le symbole du périmètre est P. Le symbole du périmètre est P. Le périmètre est une valeur unidimensionnelle mesurée en unités linéaires (un exposant de 1) comme le millimètre, le centimètre, le mètre ou le kilomètre. Le périmètre est une valeur unidimensionnelle mesurée en unités linéaires (un exposant de 1) comme le millimètre, le centimètre, le mètre ou le kilomètre.

17 Laire Laire est la mesure de la région que la figure contient. Laire est la mesure de la région que la figure contient. Le symbole de laire est A. Le symbole de laire est A. Laire est une valeur bidimensionnelle, mesurée en unités carrées (exposant de 2) comme le centimètre carré, le mètre carré ou le kilomètre carré. Laire est une valeur bidimensionnelle, mesurée en unités carrées (exposant de 2) comme le centimètre carré, le mètre carré ou le kilomètre carré.

18 Laire du rectangle Pour calculer laire du rectangle: Pour calculer laire du rectangle: A rectangle = longueur x largeur A rectangle = longueur x largeur

19 Laire du triangle Pour calculer laire du triangle: Pour calculer laire du triangle: A triangle = ½ x base x hauteur A triangle = ½ x base x hauteur

20 Une figure composée Une figure composée est une figure qui se compose de deux ou plus figures communes. Une figure composée est une figure qui se compose de deux ou plus figures communes. Par exemple, tu peux décomposer le pentagone en un rectangle et un triangle. Par exemple, tu peux décomposer le pentagone en un rectangle et un triangle.

21 Un cercle A cercle est une figure à 2 dimensions formée de tous les points dun plan qui sont équidistants dun point fixé. A cercle est une figure à 2 dimensions formée de tous les points dun plan qui sont équidistants dun point fixé. Cette distance constante sappelle le rayon du cercle. Cette distance constante sappelle le rayon du cercle. Le point fixé sappelle le centre du cercle. Le point fixé sappelle le centre du cercle. Il y a 360° dans une rotation complète autour un cercle. Il y a 360° dans une rotation complète autour un cercle.

22 Quest-ce que cest pi? Pi est un nombre irrationnel qui représente le rapport du circonférence du cercle à son diamètre. Pi est un nombre irrationnel qui représente le rapport du circonférence du cercle à son diamètre. Le symbole du pi est Le symbole du pi est Pi égale à … (cest un nombre décimal illimité et apériodique) Pi égale à … (cest un nombre décimal illimité et apériodique) Pour rendre la vie plus facile, nous allons assumer toujours que la valeur de pi est 3. Pour rendre la vie plus facile, nous allons assumer toujours que la valeur de pi est 3.

23 La circonférence dun cercle La circonférence dun cercle est la distance autour de la figure. La circonférence dun cercle est la distance autour de la figure. Alors. la circonférence est le périmètre du cercle. Alors. la circonférence est le périmètre du cercle. Le symbole de la circonférence est C. Le symbole de la circonférence est C.

24 Comment calculer la circonférence Pour calculer la circonférence dun cercle: Pour calculer la circonférence dun cercle: C = (2)(Π)(r) ou C=(Π)(d) C = (2)(Π)(r) ou C=(Π)(d) Π est le symbole de pi (qui est égale environs à 3), r est le rayon du cercle et d est le diamètre du cercle. Π est le symbole de pi (qui est égale environs à 3), r est le rayon du cercle et d est le diamètre du cercle.

25 Comment calculer laire dun cercle Pour calculer laire dun cercle: Pour calculer laire dun cercle: A = (Π)(r 2 ) A = (Π)(r 2 )

26 Les termes de géométrie Congruent veut dire la même forme et la même taille. Congruent veut dire la même forme et la même taille. Parallèle veut dire dans le même espace mais pas dintersection. Parallèle veut dire dans le même espace mais pas dintersection. Un développement peut aider à visualiser les faces dune figure à trois dimensions. (voir la page 221) Un développement peut aider à visualiser les faces dune figure à trois dimensions. (voir la page 221)

27 Les prismes et les cylindres Les prismes et les cylindres ont 2 faces congruentes et parallèles. Les prismes et les cylindres ont 2 faces congruentes et parallèles.

28 Les exemples des prismes et des cylindres Il y a trois exemples communs: Il y a trois exemples communs: un prisme rectangulaire un prisme rectangulaire un cylindre un cylindre un prisme triangulaire un prisme triangulaire

29 Laire totale des prismes et des cylindres Laire totale dune figure à trois dimensions est égale à la somme des aires de toutes les faces. Laire totale dune figure à trois dimensions est égale à la somme des aires de toutes les faces.

30 Une figure à trois dimensions composée Une figure à trois dimensions composée est formé de deux ou de plusieurs figures à trois dimensions. Une figure à trois dimensions composée est formé de deux ou de plusieurs figures à trois dimensions.

31 Laire totale dune figure à trois dimensions composée Pour déterminer laire totale de ce type de figure, tu trouves laire des faces exposées. Pour déterminer laire totale de ce type de figure, tu trouves laire des faces exposées. Alors, laire totale dune figure à trois dimensions est égale à la somme des aires de toutes les faces. Alors, laire totale dune figure à trois dimensions est égale à la somme des aires de toutes les faces.

32 Le volume de prismes et de cylindres Le volume dun solide est lespace occupé par le solide. Le volume dun solide est lespace occupé par le solide. Le symbole du volume est V. Le symbole du volume est V. Le volume est une valeur tridimensionnelle exprimée en unités cubiques (un exposant de 3), comme les millimètres cubes, les centimètres cubes et les mètres cubes. Le volume est une valeur tridimensionnelle exprimée en unités cubiques (un exposant de 3), comme les millimètres cubes, les centimètres cubes et les mètres cubes.

33 La capacité de prismes et de cylindres La capacité est le volume maximal quun récipient peut contenir. La capacité est le volume maximal quun récipient peut contenir. La capacité est exprimé en litres ou en millilitres. La capacité est exprimé en litres ou en millilitres.

34 Comment calculer le volume dun prisme: Pour calculer le volume dun prisme : Pour calculer le volume dun prisme : V prisme = aire de la base x hauteur V prisme = aire de la base x hauteur V prisme = A base x h V prisme = A base x h

35 Comment calculer le volume dun cylindre: Pour calculer le volume dun cylindre: Pour calculer le volume dun cylindre: V cylindre = Πr 2 x h V cylindre = Πr 2 x h

36 Comment calculer le volume de figure à 3-D composées Tu peux trouver le volume dune figure à trois dimensions composée par additionner les volumes des figures qui forment la figure composée. Tu peux trouver le volume dune figure à trois dimensions composée par additionner les volumes des figures qui forment la figure composée.

37 Le volume de figures à trois dimensions Le volume est lespace quun objet occupe, exprimé en unités cubiques. Le volume est lespace quun objet occupe, exprimé en unités cubiques. Un polygone est une figure fermée à deux dimensions dont les côtés sont des segments de droite. Un polygone est une figure fermée à deux dimensions dont les côtés sont des segments de droite. Un polyèdre est une figure à trois dimensions dont les faces sont des polygones. Un polyèdre est une figure à trois dimensions dont les faces sont des polygones.

38 Les figures à trois dimensions Nous allons calculer le volume de trois figures à trois dimensions: Nous allons calculer le volume de trois figures à trois dimensions: 1. Un cône 2. Une pyramide 3. Une sphère

39 Un cône Un cône est un objet à trois dimensions ayant une base circulaire et une face courbe. Un cône est un objet à trois dimensions ayant une base circulaire et une face courbe.

40 Comment calculer le volume du cône Pour calculer le volume dun cône: Pour calculer le volume dun cône: V cône = 1/3 x (le volume de cylindre) V cône = 1/3 x (le volume de cylindre) V cône = 1/3 x Πr 2 x h V cône = 1/3 x Πr 2 x h

41 Une pyramide Une pyramide est un polyèdre qui a une base polygonale et le même nombre de faces que la base a de côtés. Une pyramide est un polyèdre qui a une base polygonale et le même nombre de faces que la base a de côtés. Comme les prismes, les pyramides sont nommées daprès la forme de leur base. Comme les prismes, les pyramides sont nommées daprès la forme de leur base.

42 Comment calculer le volume dune pyramide Pour calculer le volume dune pyramide: Pour calculer le volume dune pyramide: V pyramide = 1/3 x(le volume de prisme) V pyramide = 1/3 x(le volume de prisme) V pyramide = 1/3 x A base x h V pyramide = 1/3 x A base x h

43 Une sphère Une sphère est un objet rond comme une balle. Une sphère est un objet rond comme une balle. Tous les points de la surface dune sphère sont à la même distance du point fixe appelé « centre » Tous les points de la surface dune sphère sont à la même distance du point fixe appelé « centre »

44 Comment calculer le volume dune sphère Pour calculer le volume dune sphère: Pour calculer le volume dune sphère: Volume dune sphère = 4/3 x Πr 3 Volume dune sphère = 4/3 x Πr 3

45 Laire totale de figures à trois dimensions Laire totale est la somme des aires de toutes les faces dune figure à trois dimensions. Laire totale est la somme des aires de toutes les faces dune figure à trois dimensions. Laire totale de nimporte quel prisme, pyramide ou cylindre est simplement la somme de laire des faces exposées. Laire totale de nimporte quel prisme, pyramide ou cylindre est simplement la somme de laire des faces exposées. Le symbole de laire totale est A t Le symbole de laire totale est A t

46 Comment calculer laire totale du cylindre Pour calculer laire totale du cylindre: Pour calculer laire totale du cylindre: A t = 2Πr 2 + 2Πrh A t = 2Πr 2 + 2Πrh

47 Comment calculer laire totale du cône Pour calculer laire totale du cône: Pour calculer laire totale du cône: Trouve la somme de laire de sa base et laire latéral. Trouve la somme de laire de sa base et laire latéral. A t = Πr 2 + Πro A t = Πr 2 + Πro

48 La génératrice La longueur de la génératrice utilise le symbole o La longueur de la génératrice utilise le symbole o En anglais, la génératrice veut dire « slant height » En anglais, la génératrice veut dire « slant height » La génératrice est calculée en utilisant le théorème de Pythagore. La génératrice est calculée en utilisant le théorème de Pythagore.

49 Comment calculer laire totale dune sphère Pour calculer laire totale dune sphère: Pour calculer laire totale dune sphère: A t = 4Πr 2 A t = 4Πr 2

50 Un cube Un cube est le produit de trois facteurs égaux. Un cube est le produit de trois facteurs égaux. Chaque facteur représente la racine cubique du nombre. Chaque facteur représente la racine cubique du nombre. Par exemple, la racine cubique de 8 est 2 parce que 2 3 = 2 x 2 x 2 = 8 Par exemple, la racine cubique de 8 est 2 parce que 2 3 = 2 x 2 x 2 = 8

51 Unique Triangles A unique triangle is a triangle that does not have an equivalent. (one-of-a-kind) A unique triangle is a triangle that does not have an equivalent. (one-of-a-kind)

52 How to create a unique triangle These conditions are needed to create a unique triangle: These conditions are needed to create a unique triangle: 1. The SSS case means that all three sides are given. 2. The SAS case means that the measures of two sides and the angle between the two sides are given. 3. The ASA case means that the two angles and the side contained between the two angles are given. 4. The AAS case means that the two angles and a non- contained side are given.

53 Congruence The symbol for congruence,, is read « is congruent to. » The symbol for congruence,, is read « is congruent to. » If 2 geometric figures are congruent, they have the same shape and size. If 2 geometric figures are congruent, they have the same shape and size.

54 How to determine 2 Congruent Triangles To determine 2 congruent triangles, we must check a set of minimum sufficient conditions: To determine 2 congruent triangles, we must check a set of minimum sufficient conditions: 1. Measure the lengths of 1 pair of corresponding sides and 2 pairs of corresponding angles and find them equal. 2. Measure the lengths of 2 pairs of corresponding sides and the angles included by these sides and find them equal. 3. Measure the lengths of 3 pairs of corresponding sides and find them equal.

55 Similar figures The symbol, ~, means « is similar to » The symbol, ~, means « is similar to » Two figures (polygons) are similar when their corresponding angles have the same measure and their corresponding sides are in proportion. Two figures (polygons) are similar when their corresponding angles have the same measure and their corresponding sides are in proportion.

56 How to determine 2 Similar Triangles To determine 2 similar triangles, we must check a set of minimum sufficient conditions: To determine 2 similar triangles, we must check a set of minimum sufficient conditions: 1. 2 pairs of corresponding angles have the same measure. 2. The ratios of 3 pairs of corresponding sides are equal (i.e. these 3 pairs are proportional) 3. 2 pairs of corresponding sides are proportional and the corresponding included angles are equal.

57 Transformations A transformation is a mapping of one geometrical figure to another according to some rule. A transformation is a mapping of one geometrical figure to another according to some rule. A transformation changes a figures pre-image to an image. A transformation changes a figures pre-image to an image.

58 Pre-image vs. Image A pre-image is the original line or figure before a transformation. A pre-image is the original line or figure before a transformation. An image is the resulting line or figure after a transformation. An image is the resulting line or figure after a transformation. See page 5 of Math 9 booklet to see the difference in notation between these 2 terms. See page 5 of Math 9 booklet to see the difference in notation between these 2 terms.

59 The types of transformations There are 4 types of transformations: There are 4 types of transformations: Translations Translations Reflections Reflections Rotations Rotations Dilatations. Dilatations.

60 A translation A translation is a slide. It is represented by a translation arrow. A translation is a slide. It is represented by a translation arrow.

61 A reflection A reflection is a flip. It is represented by a reflection line m (a double arrowed line) A reflection is a flip. It is represented by a reflection line m (a double arrowed line)

62 A rotation A rotation is a turn. It is represented by a curved arrow either in a clockwise or counter clockwise direction. A rotation is a turn. It is represented by a curved arrow either in a clockwise or counter clockwise direction.

63 A dilatation A dilatation is an enlargement or reduction. Dilatations always need a dilatation centre and a scaling factor. A dilatation is an enlargement or reduction. Dilatations always need a dilatation centre and a scaling factor. A scale factor is a ratio or number that represents the amount by which a figure is enlarged or reduced: A scale factor is a ratio or number that represents the amount by which a figure is enlarged or reduced: (image measurement) ÷ (pre-image measurement) (image measurement) ÷ (pre-image measurement)

64 Transformations on a Cartesian Grid A map associates each point of a geometric shape with a corresponding point in another geometric shape on a Cartesian Grid. A map associates each point of a geometric shape with a corresponding point in another geometric shape on a Cartesian Grid. A map shows how a transformation changes a pre-image to an image. A map shows how a transformation changes a pre-image to an image.

65 An example of a map (2,3) (4,7) means that the point (2,3) maps onto point (4,7). (2,3) (4,7) means that the point (2,3) maps onto point (4,7). This implies that there is a relationship between the 2 points. This implies that there is a relationship between the 2 points. (2,3) and (4,7) are called corresponding points. (2,3) and (4,7) are called corresponding points.

66 Mapping Rule The relationship between 2 corresponding points, expressed as algebraic expressions, is called a mapping rule. The relationship between 2 corresponding points, expressed as algebraic expressions, is called a mapping rule. For example: (2,3) (4,7) has a mapping rule (x,y) (x+2, y+4) For example: (2,3) (4,7) has a mapping rule (x,y) (x+2, y+4)

67 Properties of Transformations The properties of translations, reflections and 180° rotations were discussed in Grade 8. The properties of translations, reflections and 180° rotations were discussed in Grade 8. These properties are summarized on the worksheet (GS BLM 6.2 Properties of Transformations Table) These properties are summarized on the worksheet (GS BLM 6.2 Properties of Transformations Table)

68 Minimum Sufficient Conditions for Transformations To be certain that 2 shapes have undergone a specific transformation, one must provide a minimum sufficient condition (information). To be certain that 2 shapes have undergone a specific transformation, one must provide a minimum sufficient condition (information).

69 The Minimum Sufficient Condition for a Translation The line segments joining corresponding points are congruent, parallel and in the same direction. The line segments joining corresponding points are congruent, parallel and in the same direction.

70 Minimum Sufficient Condition for a Reflection The line segments joining corresponding points have a common perpendicular bisector. The line segments joining corresponding points have a common perpendicular bisector.

71 A perpendicular bisector A perpendicular bisector is a line drawn perpendicular (at a 90° angle) to a line segment dividing it into 2 equal parts. A perpendicular bisector is a line drawn perpendicular (at a 90° angle) to a line segment dividing it into 2 equal parts. The perpendicular bisector always intersects with the midpoint of the original line segment. The perpendicular bisector always intersects with the midpoint of the original line segment.

72 Minimum Sufficient Condition for a 180° Rotation The line segments joining corresponding points intersect at their midpoints. The line segments joining corresponding points intersect at their midpoints.

73 Regular polyhedron (Grade 7) A regular polyhedron is a 3-D figure with faces that are polygons. A regular polyhedron is a 3-D figure with faces that are polygons. Polyhedrons plural is polyhedra. Polyhedrons plural is polyhedra.

74 Platonic solids The Platonic solids are the 5 regular polyhedra named after the Greek Mathematician Plato. The Platonic solids are the 5 regular polyhedra named after the Greek Mathematician Plato.

75 The 5 Platonic solids 1. The cube 2. The regular tetrahedron 3. The regular octahedron 4. The regular dodecahedron 5. The regular icosahedron See Page 39 of Math 9 booklet See Page 39 of Math 9 booklet

76 The 3 characteristics of regular polyhedra (Platonic solids) 1. All faces are 1 type of regular polygon. 2. All faces are congruent. 3. All vertices are the same (i.e. they have vertex regularity)

77 What is vertex regularity? When all vertices in a polyhedron are the same, you have vertex regularity, which can be described using notation. When all vertices in a polyhedron are the same, you have vertex regularity, which can be described using notation. For example, the notation {5,5,5} represents the vertex regularity of a regular dodecahedron because there are 3 regular 5-sided polygons at every vertex. For example, the notation {5,5,5} represents the vertex regularity of a regular dodecahedron because there are 3 regular 5-sided polygons at every vertex.

78 Circle Geometry In this section of circle geometry, we will be introduced to these new terms: In this section of circle geometry, we will be introduced to these new terms: Central angles Central angles Inscribed angles Inscribed angles Tangent of a circle Tangent of a circle Circumscribed angle Circumscribed angle

79 Central angle A central angle is an angle formed by 2 radii of a circle. (page 42) A central angle is an angle formed by 2 radii of a circle. (page 42)

80 Inscribed angle An inscribed angle is an angle that has its vertex on a circle and is subtended by an arc of the circle. (page 42) An inscribed angle is an angle that has its vertex on a circle and is subtended by an arc of the circle. (page 42) What does subtended mean geometrically? What does subtended mean geometrically?

81 Tangent of a circle A tangent of a circle is a line that touches a circle at only 1 point, the point of tangency. (page 43) A tangent of a circle is a line that touches a circle at only 1 point, the point of tangency. (page 43)

82 Circumscribed angle A circumscribed angle is an angle with both arms tangent to a circle. (page 44) A circumscribed angle is an angle with both arms tangent to a circle. (page 44)

83 A polygon A polygon has all sides congruent and all angles congruent. A polygon has all sides congruent and all angles congruent. Polygons can be both regular and irregular. Polygons can be both regular and irregular. Regular polygons have both reflective and rotational symmetry. (Major difference between regular and irregular polygons) Regular polygons have both reflective and rotational symmetry. (Major difference between regular and irregular polygons)

84 Regular polyhedron A regular polyhedron is a 3-D figure with faces that are polygons. A regular polyhedron is a 3-D figure with faces that are polygons. Polyhedrons plural is polyhedra. Polyhedrons plural is polyhedra.

85 Polyhedra with regular polygonal faces In grade 9 Geometry, there are several types of polyhedra: In grade 9 Geometry, there are several types of polyhedra: The 5 Platonic solids The 5 Platonic solids A uniform prism A uniform prism An antiprism An antiprism A deltahedron A deltahedron A dipyramid A dipyramid The Archimedean solids The Archimedean solids

86 The 5 Platonic solids 1. The cube 2. The regular tetrahedron 3. The regular octahedron 4. The regular dodecahedron 5. The regular icosahedron See Page 39 of Math 9 booklet See Page 39 of Math 9 booklet

87 Uniform prism A uniform prism is a prism having only regular polygonal faces. (page 50) A uniform prism is a prism having only regular polygonal faces. (page 50)

88 Antiprism An antiprism is a polyhedron formed by 2 parallel, congruent bases and triangles. An antiprism is a polyhedron formed by 2 parallel, congruent bases and triangles. Each triangular face is adjacent (next to) 1 of the congruent bases. Each triangular face is adjacent (next to) 1 of the congruent bases. Page 51 Page 51

89 Deltahedron A deltahedron is a polyhedron that has only equilateral triangle faces. A deltahedron is a polyhedron that has only equilateral triangle faces. The deltahedron is named after the Greek symbol delta (Δ) The deltahedron is named after the Greek symbol delta (Δ) The plural is deltahedra. The plural is deltahedra. Page 51 Page 51

90 Dipyramid A dipyramid is a polyhedron with all triangle faces formed by placing 2 pyramids base to base. A dipyramid is a polyhedron with all triangle faces formed by placing 2 pyramids base to base. Page 52 Page 52

91 Archimedean solids The Archimedean solids are the 13 different semi-regular polyhedra. The Archimedean solids are the 13 different semi-regular polyhedra. The Archimedean solids have vertex regularity and symmetry (reflective and rotational) The Archimedean solids have vertex regularity and symmetry (reflective and rotational)

92 13 Archimedean solids (page 53) Cuboctahedron Cuboctahedron Great rhombicosidodecahedron Great rhombicosidodecahedron Great rhombicuboctahedron Great rhombicuboctahedron Icosidodecahedron Icosidodecahedron Small rhombicosidodecahedron Small rhombicosidodecahedron Small rhombicuboctahedron Small rhombicuboctahedron Snub cube Snub cube

93 13 Archimedean solids (page 53) continued Snub dodecahedron Snub dodecahedron Truncated dodecahedron Truncated dodecahedron Truncated icosahedron Truncated icosahedron Truncated octahedron Truncated octahedron Truncated tetrahedron Truncated tetrahedron Truncated cube Truncated cube

94 What is a vertex? A vertex is a point at which 2 or more edges of a figure meet. A vertex is a point at which 2 or more edges of a figure meet. The plural is vertices. The plural is vertices.

95 Vertex configuration Vertex configuration is the arrangement of regular polygons at the vertices of a polyhedron. (page 50) Vertex configuration is the arrangement of regular polygons at the vertices of a polyhedron. (page 50) Vertex configuration notation refers to the types of regular polygons around a vertex. Vertex configuration notation refers to the types of regular polygons around a vertex. For example, the notation {3,4,5,4} means that a vertex has an equilateral triangle, a square, a regular pentagon and a square around it in that order. For example, the notation {3,4,5,4} means that a vertex has an equilateral triangle, a square, a regular pentagon and a square around it in that order.

96 Plane of symmetry A plane of symmetry is a plane dividing a polyhedron into 2 congruent halves that are reflective images across the plane. A plane of symmetry is a plane dividing a polyhedron into 2 congruent halves that are reflective images across the plane. Page 53 Page 53

97 Axis of symmetry An axis of symmetry is a line about which a polyhedron coincides with itself as it rotates. An axis of symmetry is a line about which a polyhedron coincides with itself as it rotates. The number of times a polyhedron coincides with itself in 1 complete rotation is its order of rotational symmetry. The number of times a polyhedron coincides with itself in 1 complete rotation is its order of rotational symmetry.

98 The properties of regular polyhedra 1. All faces are regular polygons. 2. All faces are the same type of congruent polygon. 3. The same number of faces meet at each vertex. 4. Regular polyhedra have several axis of symmetry (rotational symmetry) 5. Regular polyhedra have several planes of symmetry (reflective symmetry)

99 The difference between semi- regular and regular polyhedra Regular polyhedra = Platonic solids, etc. Regular polyhedra = Platonic solids, etc. Semi-regular polyhedra = Archimedean solids Semi-regular polyhedra = Archimedean solids All faces of a semi-regular polyhedron are not the same type of regular polygon. All faces of a semi-regular polyhedron are not the same type of regular polygon.


Télécharger ppt "Chapitres 5,6,9 : La mesure et la géométrie. Une hypothèse Une hypothèse est un énoncé mathématique que nous proposons comme vrai sur la base des observations."

Présentations similaires


Annonces Google