Thermodynamique chimique. ENSI Concours Document de Cours Thermodynamique chimique. Joulia Larionova Bât. 17, 1 étage, tel. 0467144224, joulia.larionova@univ-montp2.fr La thermodynamique est la science des échanges d’énergie entre les systèmes, ou entre les systèmes et le milieu extérieur, lors de la transformation de la matière.
Chapitre I. Définitions. A. Un système Un système est un objet ou un ensemble d’objets dont on fait l’étude. Univers - ensemble du milieu extérieur et du milieu intérieur: Milieu intérieur- système Milieu extérieur
Etat d’un système L’état d’un système est défini à un instant donné: comme une photographie instantanée. On le décrit macroscopiquement au moyen des grandeurs physiques (grandeurs d’état). B. Grandeurs physiques (d'état) On dit d'une grandeur qu'elle est une grandeur d'état si, lors d'une transformation de l'état initial A à l'état final B, sa variation est indépendante du chemin parcouru pour aller de l'état A vers l'état B.
Par exemple: si le système est un individu se déplaçant sur une pente du point A jusqu'au point B, l' énergie potentielle pourra être considérée comme une grandeur d'état mais non la distance parcourue.
Grandeurs physiques: Sont des variables d’état, tels que la température (T), la pression (p), la quantité de matière (n(B)), le volume (V), la masse (m). Certaines ne sont pas indépendantes les unes des autres mais peuvent être réalisées par une ou plusieurs équations d’état. Par exemple: pV = nRT équation du gaz parfait P (Pa), V (m3), T (K), n (mol), R = 8.31441±0.00026 JK-1mol-1 constante du gaz parfait
Grandeurs extensives: Grandeurs physiques Grandeurs extensives: Proportionnelles à la quantité de la matière. Définies pour l’ensemble du système. Si un système est divisé en i sous systèmes, la grandeur extensive est la somme des grandeurs de ses sous systèmes: X = ∑xi Grandeurs intensives: Ne dépendent pas de quantité de matière: ≠ f(n). Définies en chaque point d’un système T, p, pi, xi (fraction molaire), , (potentiel chimique) Grandeurs intensives: Lorsqu'on fait l'addition de deux systèmes identiques, certaines variables comme la température ou les concentrations ne vont pas varier, ce sont les variables intensives . Grandeurs molaires: masse molaire volume molaire m, V, n, U (énergie interne), F (énergie de Helmholtz), H (enthalpie), G (énergie de Gibbs), S (entropie) m = ∑mi; V = ∑vi; n = ∑ni
Phases (Etat de matière) C. Notion d’une phase une phase est un milieu dans lequel les paramètres varient de manière continue. Phases (Etat de matière) d’un corps pur gaz Liquide Solide Différentes formes cristallisées À l'équilibre, un corps pur ne peut être que dans une phase donnée.
Phase continue est une partie du système qui est séparée des autres partie du système mécaniquement par des surfaces de séparation. Par exemple: Phase discontinue est un ensemble de substances qui possèdent les même propriétés thermodynamiques et la même composition. Par exemple: émulsion
Mélange de corps purs un mélange liquide-liquide (émulsion) un mélange liquide-gaz (aérosol), Un mélange de deux poudres (deux phases solides différentes) Diagramme de phase une « carte » des phases, c'est-à-dire la phase dans laquelle est le système pour des conditions données (pression, température, composition).
Système homogène contient une seule phase (gaz, liquides miscibles, solide) Système hétérogène contient plusieurs phases (liquides non miscibles, plusieurs solides)
D. Transferts possibles entre le système et le milieu extérieur Différents types de transferts: - Transfert d’énergie (J) / sous forme de chaleur Q, sous forme de travail mécanique W sous forme de travail électrique W’ - Transfert de matière Convention: Les quantités (énergie, matière) reçues par le système sont comptées positivement. Les quantités cédées au milieu extérieur sont comptées négativement. système > 0 < 0
E. Types de systèmes: Système fermé Pas de transfert de matière avec l’extérieur Système isolé Pas de transfert de chaleur, travail, matière Système ouvert échange de chaleur, travail, matière avec le milieu extérieur Système Système diathermique Pas de transfert de travail et de matière avec l’extérieur Système adiabatique Pas de transfert de chaleur et matière
F. L’état du système L’état du système est l’ensemble des propriétés physiques et chimiques du système. Un système est en équilibre s’il ne subit aucune évolution en fonction du temps lorsque les actions extérieures ne varient pas et qu’il n’y a aucun transfert entre le milieu extérieur et le système. Si au moins un paramètre change, il y a une transformation d’un système : le processus thermodynamique.
G. Transformation d’un système - Transformation réversible: transformation théorique constituée d’une suite d’états d’équilibre et telle que si elle est réalisée en sens opposée, le système repasse par les même états d’équilibre que dans le sens direct. Ceci est un modèle (pas d’existence réelle!) qui constitue un cas limite où la transformation resterait toujours proche de l’état d’équilibre et donc serait infiniment lente. - Transformation irréversible. Bien réelle! - Transformation renversable: On fait subir à un système une transformation entre l’état initial et un état final, et on peut réaliser la transformation inverse en inversant le sens des variations des contraintes.
Chapitre II. La réaction chimique. Definition La réaction chimique est une transformation chimique au cours de laquelle un certain nombre de constituants initiaux appelés réactifs donnent dans l’état final des produits. Des liaisons inter-atomiques sont rompues au niveau des réactifs pendant que de nouvelles liaisons apparaissent au sein des produits.
Si une transformation s'effectue sans échange de chaleur avec le milieu extérieur, elle est adiabatique (par exemple si le système est un calorimètre parfaitement isolé). Si la transformation a lieu à - T = constante, elle est isotherme ; - à V = constant, elle est isochore; - à P = constante, elle est isobare. Une succession de transformations à l'issue desquelles l'état final est identique à l'état initial est un cycle.
B. Equation – bilan. Notation générale: ∑iAi ∑kAk i k réactifs produits Une équation bilan traduit la conservation qualitative et quantitative des éléments chimiques. Les nombres i et k sont les coefficients stoechiométriques. Si les proportions des réactifs correspondent aux coefficients i, on dit que la réaction est dans les proportions stoechiométriques. Il est souhaitable de préciser l’état physique des espèces mises en jeu: Solide (s), liquide (l), gaz (g), solution aqueuse (aq).
C. Avancement d’une réaction. n() = n(0) + n(), n(0) sont les quantités de matière de la substance présentent lorsque l’avancement de la réaction prend les valeurs 0 et n(0) = cte dn = d
Exemple: A + 2B 3C Trouver l’état final des réactifs et des produits de la réaction: nA(0) = 0.3 mol nB(0) = 0.8 mol nC(0) = 0 mol
D. Taux d’avancement de la réaction. Le taux d’avancement, , est égal au rapport de la quantité du réactif limitant ayant réagi à sa quantité initiale = n()/n(0) = 0 au début de la réaction =1 à la fin d’une réaction totale <1 à la fin d’une réaction limitée Remarque: est calculé par rapport au réactif limitant.
Exemple: Pour la réaction de la formation de NH3, on introduit n0 mol de N2 et n0 mol de H2. Trouver nN2, nH2 et nNH3 finales. N2(g) + 3H2(g) 2NH3(g) H2 est le réactif limitant est fixé par rapport à max
E. Rendement de la réactions. quantité de produit obtenu à l’équilibre R = quantité de produit théor. obtenu par disparition du réactif limitant Le rendement de la réaction, r est égale au rapport de la quantité de produit obtenue à l’équilibre à la quantité de produit théorique obtenue par disparition du réactif limitant.
Exemple: N2(g) + 3H2(g) 2NH3(g) Etat initial, mol: 100 100 0 Etat final, en équilibre, mol 75 25 50 Déterminer r.
Chapitre III. Aspects énergétiques d’une réaction chimique. La chaleur (énergie thermique), Q Un système en évolution chimique est le siège de phénomènes thermiques et peut (ou non) échanger de la chaleur avec l’extérieur. Effets physiques de la chaleur: Un apport de chaleur se traduit par un échauffement (élévation de température) ou un changement d’état physique: fusion, vaporisation, sublimation. Une soustraction de chaleur se traduit par un refroidissement (abaissement de température) ou changement d’état physique: solidification, liquéfaction, condensation.
- Expression des quantités de chaleur. Q = CdT Q – quantité de chaleur reçue par le système - chaleur élémentaire; dT – l’accroissement de température; C – capacité calorifique, JK-1. Q < 0 le système libère de la chaleur; la réaction est exothermique. Q > 0 le système gagne de la chaleur; la réaction est endothermique. Q = 0 pas d’échange avec l’extérieur; la réaction est athermique
Mesure de quantité de chaleur: la calorimétrie. T1 – température de début de réaction; T2 – température à l’équilibre
B. Le travail mécanique de la pression extérieure Les réactions se produisent la plupart du temps à la pression atmosphérique patm = 101300 Pa = 1 bar Expression du travail reçu par le système: W = -pdV W = -∫pdV W – travail élémentaire, Joule dV – changement du volume du système, m3 P – pression extérieure, Pa
p V V = cte 1) V = cte, processus isochore W = 0 p V p = cte 2) p = cte, processus isobare W = -p(V2-V1) p V T = cte 3) T = cte; processus isotherme 4) dQ = 0; processus adiabatique p Q = 0 U = W = Cv(T1 – T2) V
Le premier principe de la thermodynamique. Enthalpie. Chapitre IV. Le premier principe de la thermodynamique. Enthalpie. A. Energie interne. Energie interne U (en Joule) est une énergie potentielle des interactions de toutes les particules du corps entre eux et l’énergie de leurs mouvement. U est une fonction d’état U = f(état initial et final du système) U ≠ f(chemin de transfert) On ne peut pas mesurer U, mais on peut mesurer le changement de l’énergie interne, U.
Propriétés de l’énergie interne. Etat 2 U2 Etat 1 U1 Etat 3 U3 U est indépendante du chemin suivi pour aller d’un état 1 à un état 2 U = U2 – U1 = U2 – U3 – U1 2) U2-1 = -U1-2
B. Le premier principe de la thermodynamique. L’énergie d’un système isolé est constante. Lorsqu’ un système échange les quantité de chaleur Q et de travail W avec le milieu extérieur, son énergie interne varie de U = Q + W Ou dans la forme différentielle: dU = Q + W Q, W – sont des quantité infinitésimales de chaleur et de travail transférés
Conséquences U = W; Q = 0 système adiabatique U = Q; W = 0 système mécaniquement isolé U = 0; W + Q = 0 système isolé
H est un fonction d’état H = f(état initial et final du système) C. Enthalpie. H = U + pV (en Joule) H est un fonction d’état H = f(état initial et final du système) H ≠ f(chemin de transfert) Remarque Comment on a obtenu cette expression? à p = cte W = -p(V2-V1) U = Qp – p(V2-V1) dU = Qp – pdV Qp = dU + pdV = dU + dpV = d(U + pV) = dH Qp = dH H = Qp H = U + pV
D. Energie interne et enthalpie d’un gaz parfait. Définition d’un gaz parfait – Rappel. Gaz constitué de particules de dimensions nulles, sans interactions moléculaires. C’est un état hypothétique et limite vers lequel tendent les gaz réels aux basses pressions et hautes températures. L’équation d’état pV = nRT regroupe trois lois des gaz parfait:
pV = cte à T et n fixés – Loi de compressibilité isotherme (Loi de Boyle-Mariotte). V/T = const à p et n fixés – Loi de dilatation isobare (Loi de Gay- Lussac) V/n = cte - Loi d’Avogadro-Ampère: dans des conditions fixées de température et de pression, le volume molaire d’un gaz est indépendant de la nature de ce gaz.
Propriétés d’un gaz parfait. L’énergie interne et l’enthalpie d’une quantité donnée de gaz parfait ne dépendent que de sa température: U=U(T) et H = H(T) Une petite variation de température dT modifie U et H en l’absence de transformation de matière. à V = cte dU = CvdT Cv (JK-1) est la capacité calorifique à V = cte à p = cte dH = CpdT Cp (JK-1) est la capacité calorifique à p = cte
E. Application aux transformations de matière. Transformation isochore (V = cte) W = 0, U = W + Q U = Qv Lorsqu’un système évolue à V = cte, la chaleur reçue par le système est égale à sa variation d’énergie interne. Transformation isobare (p = cte) H = Qp Lorsqu’un système évolue à p = cte, la chaleur reçue par le système est égale à sa variation d’enthalpie.
F. Capacité calorifique. 1) V = cte U = U(T2, V) – U(T1, V) C’est la différence entre l’énergie interne d’un système lorsque la température évolue de T1 à T2. U = ∫(U/T)vdT = ∫CvdT T1 T2 Cv = (U/T)v Capacité calorifique à V = cte
H = ∫(H/T)pdT = ∫CpdT 2) p = cte H = H(T2, p) – H(T1, p) C’est la différence entre l’enthalpie d’un système lorsque la température évolue de T1 à T2. H = ∫(H/T)pdT = ∫CpdT T1 T2 Cp = (H/T)p Capacité calorifique à p = cte
Chapitre V. Etat standard d’un constituant pur. Gaz parfait. Etat standard d’un gaz parfait est un état idéal (p = 1 bar, T = 298 K, = 2.43x1025 molécules/m3. Dans ces conditions il n’y a pas d’interactions entre les molécules. Phases condensées: liquides, solides. Corps pur. L’état standard correspond à l’état d’agrégation le plus stable du corps pur sous 1 bar de pression. La T est à préciser. Solutions. Si le composé est le solvant – voir le cas du corps pur. Si le composé est le soluté, l’état standard correspond à une solution infiniment diluée 1 mol.L-1 et sous 1 bar de pression Enthalpie molaire standard H0. Par convention, quelle que soit la température, l’enthalpie molaire standard d’un corps pur dans état standard est prise égale à 0 Jmol-1
Chapitre VI. Grandeurs de réaction. A. Energie interne et enthalpie de la réaction. Un système en réaction chimique possède U(T, V, ) énergie interne H(T, p, ) enthalpie - grandeurs extensives - Joules - =f() A toute fonction d’état extensive on associe: Énergie interne de réaction - grandeurs intensives - Joules/mol - ≠f() Enthalpie de réaction
AA + BB = CC + DD Enthalpie molaire de réaction est la somme des enthalpie molaires des réactifs et des produits Hi est difficile à connaître, on utilise les enthalpie standards Energie interne molaire de réaction est la somme des énergie interne molaires des réactifs et des produits
Lorsque toutes les espèces présentes dans le milieu réactionnel sont dans leur état standard, on peut définir une enthalpie standard de réaction : Enthalpie molaire standard, Joule/mol et une énergie interne standard de réaction : Energie interne molaire standard, Joule/mol Ces grandeurs se trouvent dans les tables de thermochimie
B. Influence de la température sur les grandeurs standard B. Influence de la température sur les grandeurs standard. Relations de Kirchhoff. Pour un corps pur monophasé: Capacité calorifique molaire à p = cte Capacité calorifique molaire à V = cte
La dérivation de rH0 et rU0 par rapport à la température donne: Relations de Kirchhoff
CO(g) + H2O(g) = CO2(g) + H2(g) Exemple: Déterminer à 1000 K l’enthalpie standard de réaction de conversion du CO par la vapeur d’eau selon l’équation: CO(g) + H2O(g) = CO2(g) + H2(g) Données: rH0(298 K) = 41.17 kJmol-1 Corps pur CO H2 CO2 ou H2O Cp0 / J K-1mol-1 27.6+4.1810-3T 28.83+4.210-3T 30.54+1.0510-2T
C. Relation entre rH0(T) et rU0(T). Pour une espèce prise sous la pression standard p0: Vm0 – volume molaire standard 1) Pour une phase condensée. Exemple: 1 mole de H2O à 25 °C: Vm0 = 1810-6 m3mol-1 p0Vm0 = 1810-6105 (Pa) = 1.8 J mol-1 U0(H2O, l, 298.15K) = -285830 J mol-1
2) Pour un gaz parfait. Pour 1 mol:
D. Relation entre H et rH0 de la réaction étudiée. Ces grandeurs sont différentes car: H est une grandeur extensive, Joule rH0 est une grandeur intensive, Joule/mol Les mesures calorimétriques effectuées à p = cte pour des systèmes en réaction chimique fournissent la variation d’enthalpie H. rH0 étant indépendant de , mais dépendent de T: Même raisonnement pour l’énergie interne de la réaction:
Evolution de l’enthalpie d’un système en réaction chimique: H>0; réaction endothermique rH0 > 0 rH0 = 0 H=0; réaction athermique rH0 < 0 H<0; réaction exothermique
Chapitre VII. Exemples d’enthalpie standard. A. Enthalpie standard de formation, fH0. L’enthalpie standard de formation, fH0 est associé à la réaction de formation d’une mole d’un corps pur composé à l’état standard à partir de ces éléments dans leurs état standard. Rappel: L’état standard d’un élément correspond à l’état d’agrégation le plus stable du corps pur simple correspondant sous pression standard p0 et à une température.
B. Utilisation de la loi de Hess. Pour certains composés, il n’est pas possible de déterminer expérimentalement leurs enthalpie standard de formation. La Loi de Hess prévoit que lorsqu’une équation bilan apparaît comme une combinaison linéaire de plusieurs équation bilans, l’enthalpie standard de réaction rH0 correspond à la même combinaison linéaire appliquée aux enthalpies standard de formation fHi0. - Enthalpie molaire standard de formation, notée avant Hi0
Exemple: Déterminer l’enthalpie standard de formation de l’hexane (l) connaissant son enthalpie standard de combustion, ainsi que les enthalpie standard de formation de l’eau liquide et du dioxyde de carbone gazeux. combH0(C6H14, l) = -4163.1 kJ/mol fH0(CO2, g) = -393.51 kJ/mol fH0(H2O, l) = -285.83 kJ/mol C6H14(l) + 19/2O2(g) 6CO2(g) + 7H2O(l) (1) C(s) + O2(g) CO2(g) (2) H2(g) + 1/2O2(g) H2O(l) (3) 6C(s) + 7H2(g) C6H14(l) (4)
C. Enthalpie standard de changement d’état. La transformation envisage un changement d’état d’agrégation du composé; il s’agit d’une transformation physique. Fusion: passage de l’état solide à l’état liquide. H2O(s, 273.15 K) H2O(l, 273.15 K) fusH0 = 6 kJ/mol Vaporisation: passage de l’état liquide à l’état gazeux. H2O(l, 373.15 K) H2O(g, 373.15 K) vapH0 = 44.6 kJ/mol Sublimation: passage de l’état solide à l’état gazeux. Na(s) Na(g) subH0 = 108 kJ/mol Changement de structure cristalline. C(s, graphite) C(l, diamant) rH0 = 18961 kJ/mol
D. Enthalpie standard d’ionisation, ionH0. Il s’agit de l’enthalpie standard de réaction associée à l’ionisation d’un atome gazeux en ion positif (gazeux). A(g) A+(g) + é ionH0(A, g) On détermine l’énergie d’ionisation d’un atome ou d’un ion à l’état gazeux comme l’énergie interne standard de réaction à 0 K. Elles sont souvent exprimées en électron-volt et sont appelées les énergies d’ionisation (E.I.) 1ev/atome = 96.48 kJ/mol
Dans les cycles thermochimiques, on utilise en générale la température 298.15 K et la pression standard p0. Pour convertir ionU0(0K) ionH0(298.15K) A+, A, e- - gaz parfait monoatomique; Cp(0K) = 0 ~ 6.2 kJ/mol
E. Enthalpie standard d’attachement électronique, A.E. Il s’agit de l’enthalpie standard de réaction associée à l’addition d’un électron sur un atome gazeux pour former un ion négatif gazeux A(g) + e- A-(g) A.E. = rH0 On détermine l’énergie interne de la réaction associée à ce processus à 0 K, il est donc nécessaire de transformer en grandeur enthalpique à 298.15 K.
Exemple. Déterminer l’enthalpie standard de formation de l’ion Na-(g). Données: subH0(Na, s) = 108.4 kJ/mol A.E.(Na, g) = -52.7 kJ/mol
F. Enthalpie standard de dissociation de liaison, disH0. Pour toute liaison covalente, on peut envisager une rupture homolytique A-B(g) A(g) + B(g) disH0 L’enthalpie standard de cette réaction (toujours > 0), correspond à la formation d’atomes à partir d’une molécule porte le nom l’enthalpie standard de dissociation de la liaison A-B. Il est nécessaire que la molécule AB soit en phase gazeuse. HO-OH(g) 2OH(g) disH0(O-O) = 210 kJ/mol
G. Enthalpie standard réticulaire, retH0. L’énergie réticulaire (ou énergie cristalline ou énergie de cohésion du cristal) d’un solide ionique est l’énergie interne standard de formation, à 0K, d’une mole de cristal solide à partir de ses ions pris à l’état gazeux. Na+(g) + Cl-(g) NaCl(s) rétU0(0K) Pour déterminer rétH0 on utilise le cycle de Born-Haber
Exemple Déterminer de l’enthalpie réticulaire standard du KBr à l’aide d’un cycle de Born-Haber. Données: subH0(K,s) retH0(KBr,s) - ? ionH0(K,g) fH0(KBr,s) vapH0(Br2,l) dissH0(Br-Br,g) A.E.(Br,g)
L’entropie. Le deuxième et le troisième principe de la Chapitre VIII. L’entropie. Le deuxième et le troisième principe de la thermodynamique. A. Définition de l’entropie. Il existe une grandeur d’état extensive appelée entropie notée S qui caractérise l’état de désordre du système. S est une fonction d’état, S est un grandeur extensive, S = ∑Si
B. Le second principe de la thermodynamique. Enoncé générale L’entropie de l’Univers (système + milieu extérieur) ne peut pas diminuer au cours de son évolution. L’univers évolue spontanément vers un plus grand désordre au cours du temps.
Enoncé « pratique » Au cours d’une transformation de matière, la variation d’entropie S est la somme de deux terme: S = Se + Si Se – variation d’entropie d’échange qui est due aux transferts d’énergie thermique (échanges de chaleur avec le milieu extérieur). Si – variation d’entropie de création due aux transformations internes liées à des évolutions microscopiques du système.
Transformation réversible ou en équilibre: Y B Les variables d’état X, Y ont à tout instant des valeurs connues de sorte que la transformation de A vers B peut être représentée par une courbe. A X Par une évolution en sens inverse des variables d’état, il serait possible de revenir de B en A. Si = 0 S = Se + Si = Se La variation d’entropie est la variation d’entropie d’échange qui est due aux transferts d’énergie thermique (échanges Q avec l’ extérieur).
Transformation irréversible: On ne peut pas retourner de B en A. Si > 0 La variation d’entropie S est la somme de deux terme: S = Se + Si C’est le cas de toute transformation thermodynamique spontanée d’un système abandonné à lui-même.
C. Entropie d’un gaz parfait. Pour une transformation réversible: Q = dU - pdV Pour 1 mol du gaz parfait: pV = RT; p = RT/V; Cv = (U/T)v dU = CvdT Qr = CvdT + pdV = CvdT + (RT/V)dV Qr/T = CvdT/T + RdV/V = dS Qr/T = CvdlnT + RdlnV = dS Qr transfert élémentaire de chaleur avec le milieu extérieur Qr/T = dS
Conséquences: - Calcul d’une variation d’entropie à partir des échanges de chaleur avec le milieu extérieur en considérant une transformation réversible: S = Se = Qr/T - On peut définir la température à partir de cette expression.
D. Calculs d’entropie molaire. Pour un processus réversible: Qr/T = dS Cp = (Q/T)p Q = CpdT à p = const Q/T = dS = CpdT/T dS/dT = Cp/T dS = CpdT/T
Soit l’expression de et la température varie de 298 K à T.
Cas particulier: - Système isolé: Il n’y a pas d’échange de W et Q: Q = 0 Il n’y a pas de variation de l’entropie - Processus irréversible: On ne peut pas calculer l’entropie exactement Comme pour les processus réversibles. On va donc par la suite décrire essentiellement les processus réversibles
E. Le troisième principe de la thermodynamique: principe de Nernst. Au voisinage du zéro absolu, tout les composés sont cristallisés selon des structures régulières et uniformes dans lesquelles l’absence de désordre et d’agitation thermique suggère que l’entropie molaire est égale à zéro. S00K = 0 JK-1mol-1
Conséquences: A 298 K, pour tous les composés S0 > 0. 2) L’entropie mesure le degré d’ordre d’un système; elle croît lorsque l’on passe de l’état solide à l’état liquide, puis à l’état gazeux. 3) Signification statistique de l’entropie: l’entropie mesure l’état de désordre du système. Plus l’entropie est grande, plus le désordre est important. 4) L’entropie du système est toujours supérieure à la somme des entropies des corps purs car le mélange introduit du désordre.
5) A p=cte et en absence de transformation de matière Soit pour 1 mol de corps pur Je ne sais pas, s’il faut garder ce transparent Par intégration: A p = p0:
F. Calculs de l’entropie molaire d’un corps pur. Soit on a une transition solide – liquide et de liquide – gaz à p = cte Tfus Teb solide liquide gaz T, K fusS0 vapS0 T
1) 0 Tfus - est la capacité calorifique molaire du solide à p = cte À Tfus: La fusion s’effectue à Tfus et met en jeu l’enthalpie molaire de fusion fusH0 2) 3) Tfus Teb - est la capacité calorifique molaire du liquide à p = cte
- est la capacité calorifique molaire du gaz à p = cte À Teb: La vaporisation du corps pur sous p = cte le transforme en gaz parfait et s’effectue à Teb. Cette transformation met en jeu l’enthalpie molaire de vaporisation vapH0 4) 5) Tfus T1 - est la capacité calorifique molaire du gaz à p = cte Cas particulier: l’enthalpie molaire de transition de phase. transformations entre les phases cristallographiques Solide1 – Solide 2 à Tt.p (température de transition de phase) et met en jeu
Chapitre IX. Enthalpie libre G. Energie libre F. 1) Enthalpie libre G (fonction d’état). II principe: Soit T, p = const. Soit QP la chaleur mise en jeu par le système réactionnel. La variation d‘enthalpie du système est égale à la chaleur mise en jeu : ΔHsys = QP. Or la chaleur fournie par le système est reçue par le milieu extérieur, donc son signe change : − QP = − ΔHsys.
G = H - TS La variation d’entropie du milieu extérieur: Le bilan entropique s’écrit : x(-T) On obtient la nouvelle fonction d’état: - l’enthalpie libre ou énergie de Gibbs (en Joule) G = H - TS A T et p = constante
Toute réaction chimique ne peut progresser que si l’enthalpie libre du système réactionnel diminue. Lorsque cette fonction atteint un minimum, le système est à l’équilibre. La fonction G(T,p)(sys) permet donc de définir le sens de la réaction et son positionnement à l’équilibre. C’est la fonction la plus importante pour l’étude des équilibres chimiques.
2) La fonction energie libre F (fonction d’état). : 2) La fonction energie libre F (fonction d’état). Considérons une transformation irreversible à T, V =constant. A V=cte, le travail des forces de pression est nul. Le premier principe : Le second principe : Le système échange avec le milieu extérieur Qirrév. Si on se place du côté du milieu extérieur, celui-ci reçoit - Q(irrév) = - ΔU(syst) Et la variation d’entropie du milieu extérieur devient égale à :
F = U - TS x (-T) On définit ainsi la fonction énergie libre : D’où : x (-T) On définit ainsi la fonction énergie libre : l’énergie libre ou énergie de Helmholtz; (en Joule) F = U - TS Pour une transformation effectuée à T et V = cte, on obtient :
Si la transformation est réversible: et Si la transformation est irréversible: La transformation réelle à T et V = cte, ne peut s’effectuer qu’avec une diminution de l’énergie libre du système.
Expressions différentielles pour un système fermé. Chapitre X. Expressions différentielles pour un système fermé. Variation élémentaire des fonctions F et G. 1) Système fermé de composition constante. nB = cte; dnB = 0 dU = Q + W 1er principe de thermodynamique On considère les processus réversibles: Q = TdS dU = TdS - pdV dW = -pdV
dH = d(U + pV) = dU + pdV + Vdp=TdS-pdV+pdV+Vdp dH = TdS + Vdp Application aux fonctions G et F: dF = d(U - TS) = dU - TdS - SdT = TdS - pdV - TdS - SdT ; dF = -pdV - SdT dG = d(H - TS) = dH - TdS - SdT = TdS + Vdp - TdS - SdT; dG = Vdp - SdT
G étant une fonction d’état des deux paramètres p et T, dG est une différentielle totale: Par identification: dG = Vdp - SdT et C’est valable pour n’importe quelle phase du système:
b) F est une fonction d’état de T et V b) F est une fonction d’état de T et V. dF est une différentielle totale exacte: dF = -pdV - SdT Par identification: Cette dérivation est valable pour n’importe quelle phase du système:
2) Système fermé en réaction chimique (transformation physique). Les fonctions thermodynamiques = f(nB) nB ≠ cte et dnB ≠ 0. Pour une fonction d’état X = (U, V, nA, nB, nC): dX est une différentielle totale exacte:
La dernière relation, relative à G, montre que pour un système maintenu à p et T constantes, la variation de l’enthalpie libre dG est conditionnée à une variation des quantités de matière dnB.
L’équation de Gibbs - Helmholtz. définition de G: G = H - TS H = G + TS Quatre équations de Gibbs-Helmholtz
Application: Montrer comment la connaissance de la capacité calorifique molaire d’un gaz en fonction de la température permet de calculer sa variation d’entropie entre deux température. Calculer: S0(O2, g, T2 = 600 K, p0) - S0(O2, g, T1 = 300 K, p0). Donnée:
Dérivons à pression constante: par rapport à la température, nous obtenons: Or D’où qui est égale par definition à Cp:
En prenant une mole de corps pur comme système on obtient: Application numérique: pour une mole de O2 gazeux passant de 300 K à 600 K sous pression p0:
Grandeurs molaires partielles. Potentiel chimique Chapitre XI. Grandeurs molaires partielles. Potentiel chimique A. Grandeurs molaires. A toutes grandeurs extensive X caractérisant une phase, on associe une grandeur intensive appelée grandeur molaire Xm quantité de matière totale B Exemple: - volume molaire; Hm - enthalpie molaire; Um - énergie interne molaire.
B. Grandeurs molaires partielles. 1) Définitions. A toute grandeur extensive associée à une phase, on associe une grandeur intensive appelé grandeur molaire partielle: p , T = cte; nA≠B = cte sauf nB
En utilisant le théorème d’Euler: A toute grandeur extensive X d’une phase pour laquelle on choisit un jeu de variables indépendantes p, T, et les nB: Le théorème d’Euler sur les fonctions homogènes: Si une fonction U En utilisant le théorème d’Euler:
Le théorème d’Euler sur les fonctions homogènes: Rappel: Le théorème d’Euler sur les fonctions homogènes: Si une fonction u(x, y , z) peut être écrite sous la forme: U = xnU(1,y/x, z/x) ou n est 0 ou un nombre entier, alors on dit que la fonction u est homogène de dégré n par rapport aux variables x, y, z et
Pour une phase comportant la substance B pure, toute grandeur molaire partielle est une grandeur molaire. On ajoute souvent X*B - grandeur molaire du corps pur B. En différentiant l’expression de X: En comparant avec la précédente expression de dX:
Soit à T, p = cte
2) Exemples de grandeurs molaires partielles. a) Le volume molaire partiel: On mélange 457 g d’EtOH et 457 g d’H2O. Vtot = 1000 ml et pas 1030 ml!!! V ≠ nAV*A + nBV*B ou V*A, V*B - volumes des corps purs V = nAVA + nBVB ou VA, VB - volumes molaires partiels. Volume molaire de mélange
a) L’enthalpie libre molaire partielle GB: Par définition: B - potentiel chimique de l’espèce B, l’enthalpie libre molaire partielle GB
L’utilisation du théorème d’Euler pour la grandeur extensive G permet d’écrire: soit en différentiant: Équation de Gibbs-Duhem
Chapitre XII. Le potentiel chimique. A. Ses définitions. A partir des expression différentielles de U, H, F et G:
B - potentiel chimique, l’enthalpie libre molaire partielle GB ou l’énergie de Gibbs molaire partielle.
On va s’intéresser à la phase qui contient le composé B: - Potentiel chimique de la phase qui contient le composé B; - grandeur intensive; - (Joule mol-1)
B. Influence de p et T sur B. Nous considérons un système composé d’une seule phase . L’énthalpe libre du système s’écrit:
1) Influence de la température: A pression constante: En inversant l’ordre des dérivations: S - entropie de la phase or Entropie molaire partielle du composé B dans la phase
Si B constitue seul la phase : - entropie molaire du corps B dans sa phase Par intégration de cette relation, on obtient:
2) Influence de la pression: A T=cte: En inversant l’ordre des dérivations: V - volume de la phase Volume molaire partiel du composé B dans la phase .
Si B constitue seul la phase : - volume molaire du corps B. Par intégration de cette relation, on obtient:
3) Conséquence: On peut regrouper les deux résultats précédents sous la forme:
4) Application au corps pur: Influence de T: L’entropie molaire de B augmente suivant l’ordre: S*(B, s) < S*(B, l) < S*(B, g)
Influence de la température sur le potentiel chimique du corps pur B: B*(T) T B, s B, l B, g à p = const
Par analogie avec l’énergie potentielle, un état d’agrégation du corps pur est d’autant plus stable que son potentiel chimique est faible. État solide Etat liquide Etat gazeux État solide; Solide Liquide Etat liquide; Liquide Vapeur Etat gazeux. Remarque: Le liquide peut persister à : il s’agit du phénomène de surfusion.
b) Influence de p: pour les phases condensées cette influence est très faible, car les volumes molaires des liquides et des solides dépendent très peu de la pression.
Pour les gaz parfaits: T > Ttriple T < Ttriple B*(p) B*(p) B, l B, g B, s B, s B, g p p pgl pls pgs
C. Expression du potentiel chimique. 1) B est un gaz parfait : a) B est seul dans la phase gazeuse; pression p, température T. A T=const.: Son intégration fournit la différence des potentielles chimiques: L’état standard du gaz parfait correspond à l’état du gaz sous pression standard p0 = 0,1 MPa = 1 bar B est un gaz parfait:
b) B appartient à un mélange gazeux : sa pression partielle est égale à pB à la température T. L’enthalpie libre G du mélange gazeux: Pour l’espèce B: Volume molaire partiel de B
Le mélange de gaz parfait se comporte comme un gaz parfait et le volume molaire partiel est égal au volume molaire: pBV= nBRT;
Dans l’intégration, seules les bornes de la pression vont changer entre p0 (pression standard) et pB: B est un gaz parfait à la pression partielle pB: Si yB est la fraction molaire de B dans le mélange gazeux: p - pression totale du mélange gazeux
2) B appartient à une phase condensée liquide ou solide : B est seul dans sa phase. Il s’agit du corps pur B dans l’état standard à la température T. A T = cte: Pour une phase condensée, VB* est faible, donc l’influence de p est faible.
b) B appartient à un mélange idéal. Dans la solution liquide ou solide constante B, la fraction molaire de B: On exprime le potentiel chimique de B dans une solution idéale solide ou liquide:
3) B est un soluté dans une solution diluée: L’état standard de B correspond à la solution de B 1) à la molarité standard: m0 = 1 mol de B / kg de solvant: 2) Ou à une concentration molaire de reference c0 = 1 mol L-1
= 0 Chapitre XIII. Constante d’équilibre. une constante d'équilibre caractérise l'état d‘équilibre d'une réaction. Elle représente donc un état qui ne peut pas évoluer de manière spontanée. La valeur de la constante d'équilibre dépend uniquement de la réaction chimique considérée et de la T. Les constantes d'équilibre sont généralement données à 25 °C. En considérant l'équation chimique suivante : Ai - est une espèce chimique νi - est le coefficient stoechiométrique de l'espèce Ai (ν est positif pour les produits et négatif pour les réactifs) N - le nombre de constituants = 0 αi eq est l’activité chimique de l'espèce i à l‘équilibre Rappel: L‘activité chimique d'une espèce est l'influence de la quantité d'une espèce sur l’énergie libre du système. Elle se définit schématiquement comme la « concentration active » de l'espèce en solution. Elle est : - égale à 1 si l'espèce est un solvant (une phase pure). - égale à la concentration molaire de l'espèce sur la concentration de référence C0 que l'on choisit égale à 1 mol L-1 si l'espèce est un soluté. - égale au rapport de la pi(en bar) de l'espèce rapportée à une pression de référence p0 que l'on choisit égale à 1 bar si l'espèce est un gaz.
Lien avec l'enthalpie libre standard: R est la constante de gaz parfaits T est la température absolue (en K).
Variation de la constante d’équilibre et évolution de l’équilibre avec la température Relation de Van’t Hoff Lorsque la T augmente: Si rH° < 0 (réaction exothermique), d(lnK°(T)) < 0, K° diminue; Si rH° > 0 (réaction endothermique), d(lnK°(T)) > 0, K° augmente; Une augmentation de T tend à faire évoluer le system réactionnel dans le sens endothermique de la réaction.