1 Linear Prediction. 2 Linear Prediction (Introduction) : The object of linear prediction is to estimate the output sequence from a linear combination.

Slides:



Advertisements
Présentations similaires
MY. Which ones which? MON (masculine) p ère MA (feminine) m ère MES (all plurals) parents.
Advertisements

and a justification for level 4
How to solve biological problems with math Mars 2012.
Forme ‘générique’ des spectres AR, ARMA, MA
6 Deux pronoms dans une phrases Les normes: –Communication 1.2 –Comparisons 4.1.
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
Unité 2 La vie courante Leçon 3 Bon appétit
LE SUBJONCTIF le français 3. A MOOD… The INDICATIVE MOOD: express facts, describe reality The IMPERATIVE MOOD: commands The SUBJUNCTIVE MOOD: wishes,
Notes for teachers: Olympics 2012 Project – parts of body Instructions for using these slides & attaching soundfiles if desired are in the notes pages.
Perfect tense with ÊTRE. When do you use the perfect tense with être?  The perfect tense with être is also used to describe an action in the past which.
Unité 1: Faisons Connaissance Leçon 2 Famille et copains
Laboratoire des outils informatiques pour la conception et la production en mécanique (LICP) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 1 Petri nets for.
Passé composé with être (a “D”, “R”, and “P” are missing. They stand for devenir, revenir and passer.
Les verbes en -er. –er 5000 –er verbs !!!  They are called REGULAR verbs because about 5000 verbs have the same endings.  It’s a good idea to learn.
Les verbes qui se terminent en -ER (-ER verbs). French has both regular and irregular verbs. (English does too, for that matter.)
Le passé composé The perfect tense Eg: J’ai mangé une pizza I have eaten/ate a pizza.
Les pronoms objets indirects.  Peux-tu identifier les règles des ‘pronoms objets indirects’ en regardant les exemples suivants?
THE ADJECTIVES: BEAU, NOUVEAU AND VIEUX 1.
Les Mots Interrogatifs
French 101 Important Verbs. The most important French verbs – avoir (to have), être (to be), and faire (to do/make) They are used in some of the ways.
Nous allons .. préparer un texte (pour écrire ou décrire)
Ile-de-France Presentation by: Victor Edgell. Ma région est Ile-de-France. La région est au nord de la France. La capital est Paris. Paris est aussi la.
WALT: how to talk about your timetable
Les Pronoms Direct & Indirect.
ÉCOLE POLYTECHNIQUE CONCOURS 2010 Workshop NSERC scholarship application 23 avril 2015 École Polytechnique.
Les verbes réfléchis au passé composé
C’est VS. il est (elle est)
Year 10. Bon appetit unit. Introducing ‘en’. ‘en’ – ‘some of it’ or ‘some of them’ ‘En’ is a small but important word in French that is commonly used.
Structures de données et algorithmes – TP7 Maria-Iuliana Dascalu, PhD
Les pronoms objets Mme Zakus. Les pronoms objets When dealing with sentences, subjects are part of the action of the verb. In other words, they “ do ”
La mémoire(1): Comment bien travailler
Bienvenue dans ma classe Madame Bancroft Salle 117 courriel: Blog: myriverside.sd43.bc.ca/ebancroft.
Irregular Adjectives Not all adjectives are made the same.
Le 4-7 novembre. Qui est présent? Quelle heure est-il? La feuille pour étudier L’examen La Jéopardie!
Les verbes réfléchis.
Français I stem-changing verbs. Stem-changing verbs Acheter Préférer By looking at the name for these verbs, what can you predict will happen? I will.
Bienvenue and Welcome to Our French II Live Lesson! We will begin shortly!
Object pronouns How to say “him”, “her”, “it”, “them”
1. Est-ce que Est-ce que, literally translated "is it that," can be placed at the beginning of any affirmative sentence to turn it into a question: Je.
On conjugue! [Avoir et Etre] It is very important to learn and practise using the conjugations of verbs in French.
Verb  a word that show action or a state of being.  Examples: run, jump, play, talk, listen  In English, we just the verb “to be” to describe how people.
WILF: TO BE ABLE TO GIVE AN OPINION FOR LEVEL 3
JOUER (to play), FAIRE (to do) and ALLER (to go) You’ll need these 3 verbs to talk about the sports and activities that people do. Follow these rules.
Français I – Leçon 6A Structures demonstrative adjectives passé composé with avoir.
The Passé Composé Objective: to talk about things we have done on a visit to explain what events happened to speak and write about events in the past.
Le café -The café is a favorite gathering place for French young people. They go there not only when they are hungry or thirsty but also to meet their.
 USED TO DESCRIBE PAST EVENTS  COMPOSED OF TWO WORDS + conjugated form of “AVOIR” OR “ÊTRE” Le Passé Composé (literally, “past composed”) [Unité 7, p.
Introduction à la Physique des Particules
Le Chatelier's Principle Lesson 2. Le Chatelier’s Principle If a system in equilibrium is subjected to a change processes occur that oppose the imposed.
It’s.  Both C’est and Il est/Elle est can mean it’s.  There are specific times to use each.
OBJECT PRONOUNS WITH THE PASSÉ COMPOSÉ Page 122. Placement  With all object pronouns, placement is the same. DirectIndirectPlaces De+ nouns or ideas.
Negative sentences Questions
Les normes: Communication 1.1 – Understanding the spoken and written language Comparisons 4.1 – Understanding the nature of language through comparisions.
MAYA OULTACHE FOYER 140 Tutorial de mathématique numéro 1 mathematic tutorial number 1.
Le collège mardi le deux mars HL/ Fr1. Lesson objectives To revise basic principles of past tense in French To look at how to use the future tense.
Un petit peu de grammaire… Le passé composé. On récapitule…le verbe “être” Jesuis Tu es Il est Elle est Nous sommes Vous êtes Ils sont Elles sont.
Expressions of Quantity. Combien de To ask “how many” or “how much,” use the expression combien de before a noun. Combien de croissants est-ce que tu.
Le Passif...getting to know the Passive Voice in French!
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
Reflective verbs or Pronominal verbs
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
ÊTRE To be (ou: n’être pas!).
Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics.
© 2004 Prentice-Hall, Inc.Chap 4-1 Basic Business Statistics (9 th Edition) Chapter 4 Basic Probability.
Le soir Objectifs: Talking about what you do in the evening
Les Mots Intérrogatifs
Transcription de la présentation:

1 Linear Prediction

2 Linear Prediction (Introduction) : The object of linear prediction is to estimate the output sequence from a linear combination of input samples, past output samples or both :  The factors a(i) and b(j) are called predictor coefficients.

3 Linear Prediction (Introduction) : Many systems of interest to us are describable by a linear, constant-coefficient difference equation : If Y(z)/X(z)=H(z), where H(z) is a ratio of polynomials N(z)/D(z), then Thus the predictor coefficients give us immediate access to the poles and zeros of H(z).

4 Linear Prediction (Types of System Model) : There are two important variants : (AR)  All-pole model (in statistics, autoregressive (AR) model ) : The numerator N(z) is a constant. (MA)  All-zero model (in statistics, moving-average (MA) model ) : The denominator D(z) is equal to unity. (ARMA)  The mixed pole-zero model is called the autoregressive moving-average (ARMA) model.

5 Linear Prediction (Derivation of LP equations) : Given a zero-mean signal y(n), in the AR model : The error is : To derive the predictor we use the orthogonality principle, the principle states that the desired coefficients are those which make the error orthogonal to the samples y(n-1), y(n-2),…, y(n-p).

6 Linear Prediction (Derivation of LP equations) :  Thus we require that Or, Interchanging the operation of averaging and summing, and representing by summing over n, we have The required predictors are found by solving these equations.

7 Linear Prediction (Derivation of LP equations) :  The orthogonality principle also states that resulting minimum error is given by Or,  We can minimize the error over all time :  where

8 Linear Prediction (Applications) : Autocorrelation matching :  We have a signal y(n) with known autocorrelation. We model this with the AR system shown below : σ 1-A(z)

9 Linear Prediction (Order of Linear Prediction) : The choice of predictor order depends on the analysis bandwidth. The rule of thumb is :  For a normal vocal tract, there is an average of about one formant per kilo Hertz of BW.  One formant requires two complex conjugate poles.  Hence for every formant we require two predictor coefficients, or two coefficients per kilo Hertz of bandwidth.

10 Linear Prediction (AR Modeling of Speech Signal) : True Model: DT Impulse generator G(z) Glottal Filter Uncorrelated Noise generator H(z) Vocal tract Filter R(z) LP Filter Voiced Unvoiced Pitch Gain V U U(n) Voiced Volume velocity s(n) Speech Signal

11 Linear Prediction (AR Modeling of Speech Signal) : Using LP analysis : DT Impulse generator White Noise generator All-Pole Filter (AR) Voiced Unvoiced Pitch Gain estimate V U H(z) s(n) Speech Signal