27 Mai 2005M-H Aumeunier Design du démonstrateur Folding Mirror  Steering mirror (tilt variable) contourne le problème pour parcourir tout le plan du.

Slides:



Advertisements
Présentations similaires
Cédric CERNA, Eric PRIETO
Advertisements

Diffraction par une ouverture plane en incidence normale
1 donnéesanalysephysique Les supernovae: la méthode Images Spectre identification. Ia magnitude  M,   z(redshift) galaxie Hubble spectre Une méthode.
Le démonstrateur Module d’illumination Module slicer Module spectro
07 Octobre 2005M-H Aumeunier Pupille d’entrée Φ=0.2mm Miroir sphérique d d=137µm Effet « Œil de chat » Diffraction supplémentaire introduite par le support.
Proto 0 : avancement MHA & CC. Schéma de Principe du proto 0 Illumination module Detection module Prototype Slicer module Stack Folding Mirror Steering.
Integral Field Spectrograph Opto-mechanical design of the demonstrator CPPM(CNRS),FRANCE.
Mécanique CPPM Pierre KARST – 27/05/05 Détecteur IR - Cryostat de test IPNL - Implantation dans la détecteur Démonstrateur - Architecture par module -
CROUZET Pierre-élie JRJC 2007 Un spectrographe à intégral de champ par disséqueur d ’ image pour SNAP.
POINT SUR LES OPTIQUES DU DEMONSTRATEUR Slicer/ Miroirs Pupilles et Fentes Proposition technique et financière de la part de SESO Délai de fabrication:
1 Etude Statique sur l’axe horizontal du berce BB.
Géométrie Différentielle – Cubiques d'Hermite Introduction aux courbes paramétriques et à la géométrie différentielle.
25 ans d’Astronomie. TP : Effet Zeeman et son application en astronomie 1 er Colloque International Des Etudiants Amateurs d'astronomie du.
Fonction de Transfert de Modulation. Notions abordées Rappels : cas cohérent Cas incohérent Mise en oeuvre : – Mires sinusoïdales, carrées Allures des.
Méchanic at the CPPM – 10/01/06 Françoise RIVIERE – Jean-Luc GIMENEZ – Daniel Labat Pierre KARST IR Detector - Test cryostat : Machining and polishing.
Réalisé par R. MARRAKHA. KHAYAR Khayar-marrakh Université Hassan-II Faculté des sciences Aïn chock Casablanca Professeurs assistants - département de physique.
Volée 1316 S3 Cours No 2_3 : Le nombre en 1-2H. Les fonctions du nombre  Dénombrer, énumérer, décrire une collection. Aspect cardinal  Dater, classer,
Integral Field Spectrograph Opto-mechanical design of the demonstrator PIERRE KARST, JEAN-LUC GIMENEZ, DANIEL LABAT CPPM(CNRS),FRANCE.
"l'armature" des cartes.. Projection : Les projections sont la transition d'une forme quasi sphérique (la terre en 3 dimensions) à une surface plane (la.
Journée Wallonne Le Cerema: Présentation des activités de la Route
Exercice On considère un Système de contrôle de température composé de: Capteur, ordinateur Le capteur transmit à chaque heure de la journée la température.
Traitements et interprétation des données gravimétriques
Lecture de carte 2 Les projections DFM / DIMT - TOPO 201.
Introduction à la vision artificielle Deuxième partie Étalonnage géométrique de la caméra et du système Patrick Hébert Génie électrique et génie informatique.
La Photo Les bases techniques
Préparez-vous.
Université cadi ayyad Faculté des sciences semlalia
Acquisition des données
Trois démarches pédagogiques complémentaires et imbriquées
Chapitre 6 Techniques de Fermeture (1)
Chapitre 2 La réflexion.
Couche limite atmosphérique
Analyse Performance Chaine Energie + Problématique
CMOI 2008 Nantes par S. Brahim*, J.L. Bodnar* et P. Grossel*
Etalonnage d’une caméra (on parle aussi de calibrage)
Integral Field Spectrograph Opto-mechanical design of the demonstrator
Homographies Patrick Hébert & Denis Laurendeau (Dernière révision : septembre 2016)
Cyber-Sphinx Séance 2.
PROTO 0 - Module « Prototype Slicer »
MODELE NUMERIQUE ET CARACTERISATION EXPERIMENTALE
Integral Field Spectrograph Opto-mechanical design of the demonstrator
8/23/2018 2:32 AM Cinématique But :
M M.
GRAPHISME PAR ORDINATEUR
Ondes océaniques, vagues et marées
La cotation fonctionnelle Chapitre A : Tolérances dimensionnelles
Exo 4 : Résoudre dans [ -15π ; -13π ] 4 sin² x – 2(√2 - 1)sinx - √2 < 0 …
Short distance Exposure (Mask Aligner)
Deuxième partie LE DOSSIER TECHNIQUE DU MARINGOUIN.
Diffraction. Diffraction (suite) n Principe de Huygens: « Chacun des points d’un front d’onde agit comme une source de petites ondes secondaires. À.
Sommaire : Projet Table tactile Projet Système d’arrosage automatique.
Cinématique inverse Comment déplacer ma main jusqu’ici ?
Programme financé par l’Union européenne
Programme financé par l’Union européenne
Chapitre 4 Réflexion et réfraction de la lumière.
Figure 2 : Réflexion plane (en haut)
La modélisation et la simulation des objets et systèmes technique
Des données numériques aux résultats de physique
Elles contiennent des informations autre que géométriques
GEOMETRIE VECTORIELLE
Exercices de simulation par éléments finis
Sera vu dans le prochain cours.
Master of Light Une vie consacrée à la passion de la lumière et aux instruments optiques de haute précision.
Audrey Gervereau, Métis, stage M2
Design, innovation et créativité
LE TORSEUR STATIQUE 1) Définition 2) Notation 3) Deux cas particuliers
Préparer la production
Présentation des nouveaux programmes de mathématiques de première des séries technologiques Jessica Parsis.
Estimation des conditions initiales par inversion
Programmation – Mathématiques
Transcription de la présentation:

27 Mai 2005M-H Aumeunier Design du démonstrateur Folding Mirror  Steering mirror (tilt variable) contourne le problème pour parcourir tout le plan du slicer (champ limité initialement par l’ouverture du collimateur) Angle d’incidence sur le slicer + grand  aberrations? Collimated Beam Steering Mirror Slicer Pupil Mirrors Slits Mirrors Prism Detector Plane Folding Mirror Collimator Small Imager Mirror Focus Mirror Collimator Entrance Pupil Large Imager Mirror OFFNER RELAY SLICER IMAGER SPECTROMETER NEW :

Etat des devis Devis slicer- miroirs pupilles et fentes  En attente de la réponse de SESO Devis des miroirs  définition des miroirs: 5 miroirs sphériques, 1 prisme, 1 miroir plan (voir doc « Request of quotation : optical reflective surfaces for an IFU design »)  premier contact avec Winlight System (P.Karst) DEMONSTRATEUR

Module re-imageur Module spectro Module slicer Détecteur Module d’illumination Procédure d’alignement Faisceau collimaté Alignement des modules indépendamment des uns par rapport aux autres DEMONSTRATEUR

Design Optique Calcul de la position du point image et des aberrations associées (Zernike) dans les plans images du système pour un nombre fini de points du plan objet (x0,y0) ZEMAX PAW Interpolation par réseau de neurones IDL Simulation de la diffraction et des aberrations Simulation du système optique PROTO 0

Entrance Pupil Slicer Pupil Mirrors Slit Mirrors Aperture Plane Field of view of one slice 5 active slices 24 points on x 5 points on y per slice x y Image Plane Pupil Plane Modélisation du système optique Proto0 Dans chaque plan image, on calcule: les distorsions (optique géométrique) les aberrations (Coeff. de Zernike) la diffraction (optique de Fourier) PROTO 0

ZEMAX: Calcul des aberrations et distorsions du champ Sous système 1: Ouverture Plan Objet: Ouverture Plan Pupille: Aperture Mirror Plan Image:Slicer Sous système 2: Slicer Plan Objet: Slicer Plan Pupille: Miroirs pupilles Plan Image: Miroir fente 2 sous système réalisés indépendamment (autant de sous système que de plan image) OUTPUT: grilles décrivant le plan objet et le plan image et les aberrations associées pour chaque sous système PROTO 0

PAW: Interpolation par réseau de neurones Première Etape: Apprentissage par un Réseau de Neurones (NN) à 2 couches Prédiction de la position de la PSF et des aberrations associées pour n’importe quel point dans le plan objet Structure du NN choisie: Sous système « ouverture »: (2 param. d’entrée (x0,y0), 7 neurones par couche, 1 param. de sortie(xi, yi et {a i } 1≤i≤28 ) Sous système « slicer »: Enrichissement du NN pour le sous système « slicer » pour résoudre des problèmes de convergence (extension à 3 paramètres d’entrée: x0, y0, numéro slice). PROTO 0

IDL : Simulation de la diffraction Optique de Fourier Amplitude dans le plan Image TF Surface diffractante pourvue d’aberrations Plan Image didi Tache de diffraction yoyo xoxo xixi yiyi z Source ponctuelle (SN) Amplitude dans le plan Objet Terme de déphasage du aux aberrations: Coeff. de Zernike Polynôme. de Zernike

Projection suivant y Projection suivant x épaisseur d’une slice PSF dans le plan du slicer à 1.7 µm Pupille d’entrée elliptique (rx=1.3 mm, ry=0.65 mm) PROTO 0

Projection suivant y Projection suivant x épaisseur d’une slice PSF dans le plan du slicer à 1.7 µm Pupille d’entrée circulaire (Φ=0.2 mm) PROTO 0

n°slice Efficacité total sur 3 slices: 98% 42 % 54% 3 % 7 % 81 % 10 % Efficacité total sur 3 slices: 97% Pupille d’entrée: pupille circulaire Φ=0.2 mm PSF sur les slices non découpée à 1.7 µm Centre du slicer Pt image décalé Déplacement de la PSF sur la slice et mesure d’efficacité PROTO 0

Résumé de la Simulation du spectrographe 1- Calcul de la position du point image et des aberrations associées dans chaque plan image 2- Interpolation du plan objet%plan image et des coefficients de Zernike Optique Géométrique + Modélisation des aberrations par les Zernike  Zemax Réseau de neurones  PAW 3- Calcul de la diffraction par les pupilles Optique de Fourier  IDL