Outils Statistiques Damien Van Gysel CHU de Nice 2012-2013.

Slides:



Advertisements
Présentations similaires
Atelier 1 Le problème du surpoids sur géogébra. Etude de la prévalence du surpoids: (document Ressources pour la classe de terminale) Situation: On souhaite.
Advertisements

Généralisation de la comparaison de moyennes par Analyse de la variance (ANOVA)
Organisation, gestion de données Les connaissances que l'enseignant doit maîtriser à son niveau Présentation réalisée à partir de l'ouvrage de Roland Charnay.
Chapitre 6. Introduction à l’échantillonnage Les sondages Notions fondamentales Fluctuations d’échantillonnage d’une moyenne Théorème central limite C6-1.
PERFORMANCES D’TEST DE DEPISTAGE Dr S.AMAROUCHE Maître assistante Epidémiologie Université 3 Constantine SEMEP CHU Constantine.
Séance bibliographique
Dépistage du cancer de la prostate
Notions de statistiques et d’analyse de données
Mémoire de DES d’Anesthésie-Réanimation
Bouazza.G1;LASSINA.D1; H.Knouni1;AC.Ansari2; A.Barkat1
Mémoire de DESC de Médecine d’urgence
Suites ordonnées ou mettre de l’ordre
Epidémiologie.
Corrélation et régression linéaire simple
Tests diagnostiques DFGSM3 Année Mercredi 7 septembre 2016
Etude des performances d’un nouveau dispositif de biologie délocalisée pour la mesure du taux de fibrinogène MEMOIRE POUR L'OBTENTION DU DIPLOME D'ETUDES.
Épreuve de lecture critique d’articles Pr Christophe Baillard
Valeurs de toutes les différences observables sous H0
IMPACT D’UN SUPPORT ÉDUCATIF SUR LA DIVERSIFICATION ALIMENTAIRE LASSINA D. ;BOUAZZA G. ; KNOUNI H; BARKAT A. Centre de référence de néonatologie et de.
Comparaison de deux pourcentages.
Madame/Monsieur le professeur ,,,,,
Cours d’Econométrie de la Finance (STA202 – IV 4-5)
Noms des auteurs : Y. Z. A. Khedid, H. BOUTALLAKA, Y. KERRoum, R
Loi Normale (Laplace-Gauss)
4°) Intervalle de fluctuation :
LES INDICATEURS DE SANTE INDICATEURS DE SANTE Pr. KELLIL M.
Une grande partie des données que nous serons amenés cette année à étudier sera exprimée en unités monétaires. Or, nous le savons, il existe un phénomène.
Statistique descriptive
Mesures de Variation, Coefficient Multiplicateur, Taux de Variation
Epidémiologie analytique
Evaluation de l’utilisation et de l’impact de l’échographie pré hospitalière au sein des équipes médicalisées pré hospitalières en centre urbain. C. Derkenne1.
Coefficient de corrélation linéaire
Épreuve de lecture critique d’articles Pr Christophe Baillard
POL1803: Analyse des techniques quantitatives
Épreuve de lecture critique d’articles
et discussion de l'article 2
Technologies de l’intelligence d’affaires Séance 12
Risque d’erreur de 1ère espèce : α
4.3 Estimation d’une proportion
4.5 Tests D’hypothèses sur une proportion
4.4 Tests D’hypothèses sur une moyenne
Méthode Taguchy Analyse de la variance Anavar
4.2 Estimation d’une moyenne
Introduction aux statistiques Intervalles de confiance
Introduction à la recherche appliquée Quel est l’impact des normes IFRS sur la fiabilité et la transparence des états financiers marocains? Clément Rodriguez.
Statistique. Probabilite ou risque Le risque c’est le pourcentage des valeurs qu’on neglige plus le risqué augmente plus on neglige des valeurs Hypothese.
POL1803: Analyse des techniques quantitatives
Calculs des incertitudes Lundi 30 Avril 2018 Master de Management de la Qualité, de la Sécurité et de l’Environnement.
Mémoire de fin d’études PAPIN Alexandra 2013 – 2016
Chiara MAJ Laurent RIGAL & Virginie RINGA
Rappel (3): les étapes des tests statistiques
4°) Intervalle de fluctuation :
P LAMBOLEZ Partie maths V GILLOT Partie anglais
Présentation 3 : Sondage aléatoire simple
Présentation 5 : Sondage à probabilités inégales
Titre de la communication
On lance 100 fois de suite une pièce de monnaie.
Centre d’études et de recherches sur les qualifications
L’ANALYSE DES DONNEES Samuel MAYOL S. Mayol - L’analyse des données.
Position, dispersion, forme
Programme d’appui à la gestion publique et aux statistiques
Conception cartographique
PROGRAMMATION SCIENTIFIQUE EN C
Utiliser le modèle log-linéaire pour mettre au jour la structure du lien entre les deux variables d’un tableau de contingence : un exemple d’application.
Les méthodes quantitatives en éducation
Tests d’hypothèses paramétriques 1 Cours Statistiques Chapitre 9.
Objectifs du chap. 5: Plans quasi-expérimentaux
STATISTIQUE INFERENTIELLE LES TESTS STATISTIQUES.
TD Comment les économistes, les sociologues et les politistes travaillent-ils et raisonnent-ils ? M. Osenda.
Transcription de la présentation:

Outils Statistiques Damien Van Gysel CHU de Nice

SOMMAIRE Rappel statistiques Critères de validité d’un test diagnostique Lecture critique d’article

Rappel statistiques

Variables quantitatives Représentent la mesure d’une quantité et prennent des valeurs numériques qui ont une signification concrète –Exemples: l’âge, la pression artérielle, le poids… On peut faire la moyenne des observations

Variables qualitatives Catégories qui ne sont pas associées à une valeur numérique On peut faire un pourcentage des observations Exemple: tabagisme, nombre d’enfants

Variables qualitatives 2 types de variables qualitatives 1.Variables qualitatives nominales Les catégories ne sont pas ordonnées exemple: groupes sanguins 2. Variables qualitatives ordinales Les catégories sont ordonnées exemple: niveau d’études

Statistiques descriptives Indices de position –Moyenne –Médiane –Mode Indices de dispersion –Variance –Ecart-type

Statistiques descriptives Représentation graphique –Variables quantitatives histogramme –Variables qualitatives diagramme en bâtons

Histogramme

Diagramme en bâtons

Statistiques analytiques Construction du test selon 2 Hypothèses Hypothèse nulle (H0) Il n’y a pas de différence entre 2 moyennes (ou 2 pourcentages) Hypothèse alternative (H1) Il y a une différence entre 2 moyennes (ou 2 %° H0 si p >= 0.05 H1 si p < 0.05

Statistiques analytiques Risque de 1ere espèce = Risque alpha Risque de conclure à tort une différence alors qu’il n’y en a pas « H1/H0 » En général, risque de 5% « Il y a une différence statistiquement significative au seuil de 5 % »

Statistiques analytiques Risque de seconde espèce= Risque Beta Risque de conclure a tort à l’absence de différence alors qu’il y en a une « puissance de l’étude « H0/H1 » En général, risque de 20 %

Risque de 1ere et 2 e espèce H0 VraieH1 vraie Rejet H0Risque alphaOK Acceptation H0OKRisque beta

Les conditions d’application 2 variables qualitatives Test du CHI 2 (condition: Effectifs >= 5) 1 variable qualitative & 1 variable quantitative Test de Student (Condition: Loi normale (> 30) et même variance) 2 variables quantitatives Corrélation de Pearson

Cas particuliers Petits échantillons –2 variables qualitatives Test exact de Fisher –1 variable qualitative et 1 variable quantitative Mann Whitney Séries appariées Exemple: mesure de la PAS avant/ après Qualitatif: test de Mac Nemar Quantitatif: Test de Student sur séries appariées

Analyse multivariée Y= X1 + X2 + X3 Y= variable quantitative – Régression linéaire Y= variable qualitative – Régression logistique Y= données censurées –Modèle de Cox

Exemples

Exemple 1 On veut comparer les réactions produites par 2 vaccins B.C.G désignés par A et B. Un groupe de 348 enfants a été divisé par tirage au sort en 2 séries qui ont été vaccinées, l’une par A, l’autre par B. La réaction a été lue ensuite par une personne ignorant le vaccin utilisé.

Exemple 1 VaccinRéaction légère Réaction moyenne Ulcération/ abcès Total ABAB Total Identifier les 2 variables. Quel test utiliser et pourquoi ?

Exemple 1 Réponse Il s’agit de deux variables qualitatives le vaccin: A ou B la réaction: légère ou moyenne ou abcès Test du CHI 2 (on vérifie les effectifs > 5) CHI 2= 8.81 On garde H0 « il n’y a pas de différence entre les groupes donc pas de lien au seuil de 5% »

Exemple 2 Dans une population, on a tiré au sort 32 sujets dont on a mesuré la tension artérielle. Les sujets se répartissent en 17 fumeurs dont la tension artérielle moyenne est M1= et 15 non fumeurs dont la tension artérielle moyenne est M2= Quel type de variable a-t-on ? Quel test utiliser ?

Exemple 2 Une variable qualitative: Fumeur/ Non fumeur Une variable quantitative: la pression artérielle On utilise donc un test de Student (conditions d’application vérifiées) Il n’ y a pas de lien entre tabac et PA.

Exemple 3 On souhaite étudier la relation entre l’âge en année de la mère et le poids de naissance de son enfant en centaines de grammes dans un échantillon de 200 femmes. Quelles sont les 2 variables étudiées ? Quel test utiliser ?

Exemple 3 Il s’agit de 2 variables quantitatives X= âge en années de la mère Y= poids de naissance de l’enfant. On utilise donc une corrélation de pearson. On trouve une association significative entre les 2 variables.

En pratique 1.Déterminer le type de variables étudiées 2.Représenter graphiquement les données 3.Regarder les conditions d’application 4.Procéder aux tests

Intervalles de confiance Si l’étude était répétée 100 fois, la réelle valeur de l’indice estimé serait incluse dans 95 cas sur 100 « Intervalle de confiance à 95 % » Plus l’intervalle est large, moins il est précis Pallie les fluctuations d’échantillonnage

Critères de validité d’un test diagnostique

29 Validité Le test de dépistage est capable d ’identifier correctement les malades et les non malades La validité est appréciée par les caractéristiques intrinsèques du test Elle est jugée à partir de la comparaison entre les résultats du test étudié et la réalité, test de référence, considéré comme le meilleur possible et auquel on confronte le nouveau test

30 Validité

31 Validité caractéristiques intrinsèques Dépendent du test mais pas de la population à laquelle le test est appliqué Constantes quelle que soit la prévalence de la maladie

32 Sensibilité : exercice Un nouveau test a été étudié chez 100 malades venus consulter pour suspicion de cancer du col utérin Parmi ces 100 consultantes, 50 avaient un cancer du col prouvé à la biopsie Les résultats de l ’étude de validité du nouveau test sont décrits dans le tableau ci-contre Quelle est la sensibilité du test ?

33 Caractéristiques intrinsèques Spécificité Probabilité pour un sujet sain d ’avoir un test négatif Elle mesure l ’aptitude du test à reconnaître les non- malades Proportion variant de 0 à 100% Intervalle de confiance à 95%

D Van Gysel- S Gonfrier Evaluation du système de santéGONFRIER Sébastien CHU Nice Master 1 09/07/2016 GONFRIER Sébastien CHU Nice Master 1 34

D Van Gysel- S Gonfrier Evaluation du système de santéGONFRIER Sébastien CHU Nice Master 1 09/07/2016 GONFRIER Sébastien CHU Nice Master 1 35

36 Sensibilité et spécificité Plus le sensibilité et la spécificité sont proches de 100% et meilleur est le test Ce sont des valeurs qui varient en sens inverse : quand on augmente la sensibilité, la spécificité diminue et inversement

37 Validité Performances prédictives d’un test Les valeurs prédictives positives et négatives permettent de savoir quelle confiance l ’on peut accorder au résultat du test Varient de 0 à 100 % Varient en sens inverse: plus la VPP augmente, plus la VPN diminue et inversement

38 Performances prédictives Valeur prédictive positive La valeur prédictive positive (VPP) est la probabilité qu ’un sujet soit effectivement malade en cas de test positif Total T+

39 Performances prédictives Valeur prédictive négative La valeur prédictive négative (VPN) est la probabilité qu ’un sujet soit effectivement non malade en cas de test négatif Total T-

D Van Gysel- S Gonfrier Evaluation du système de santéGONFRIER Sébastien CHU Nice Master 1 09/07/2016 GONFRIER Sébastien CHU Nice Master 1 40

D Van Gysel- S Gonfrier Evaluation du système de santéGONFRIER Sébastien CHU Nice Master 1 09/07/2016 GONFRIER Sébastien CHU Nice Master 1 41

D Van Gysel- S Gonfrier Evaluation du système de santéGONFRIER Sébastien CHU Nice Master 1 09/07/2016 GONFRIER Sébastien CHU Nice Master 1 42

D Van Gysel- S Gonfrier Evaluation du système de santéGONFRIER Sébastien CHU Nice Master 1 09/07/2016 GONFRIER Sébastien CHU Nice Master 1 43

44 VPP et VPN sont fonction 1 - Des caractéristiques intrinsèques du test - si la spécificité augmente alors la VPP augmente - si la sensibilité augmente alors la VPN augmente 2 - De la population à laquelle le test est appliqué: elles dépendent de la prévalence de la maladie dans la population - quand la prévalence augmente la VPP augmente fortement et la VPN diminue modérément

Lecture Critique d’article

Structure IMRAD Introduction: contexte & objectif Matériels et Méthodes: patients, identification des biais, critère de jugement principal… Résultats Discussion: but atteint ? Qualité ? Autres données ?