L’assimilation des spectres de Sentinel 1-A dans le modèle MFWAM : Conséquences sur le couplage avec l’océan L. Aouf (1), A. Dalphinet (1) et H. Giordani.

Slides:



Advertisements
Présentations similaires
Environmental Data Warehouse Cemagref, UR TSCF, TR MOTIVE 2011 – projet Miriphyque.
Advertisements

1 Initiatives involving the social partners in Europe on climate change and employment policies Denmark : The experience of the Lindoe Offshore Renewable.
Status report SOLEIL April 2008
Cliquez et modifiez le titre Cliquez pour modifier les styles du texte du masque Deuxième niveau Troisième niveau Quatrième niveau Cinquième niveau 1 Cliquez.
How to solve biological problems with math Mars 2012.
T°CT°C et Salinité. Figure 5.7 Upper: Zonal averages of heat transfer to the ocean by insolation QSW, and loss by longwave radiation QLW, sensible heat.
A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E.
Paramétrisation des LiNOx dans Méso-NH
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
Etudes statistiques de la puissance des ondes à la magnétopause et à son voisinage (Traversées Cluster). Corrélations avec la pression du vent solaire.
Energy optimization in a manufacturing plant Journée GOThA Ordonnancement avec contraintes d’énergie et/ou de ressources périssables LAAS-CNRS Toulouse.
Nereus Project, réunion Océano, Toulouse, 30/09/2008 Journée de rencontre Météo France/Mecator/Océan 14 Juin Validation des flux de surface radiatifs.
Un point sur l’exercice décennal de CMIP5 : EPIDOM et résultats préliminaires MISSTERRE, Toulouse, June 2011.
1 Ce document est la propriété d ’EADS CCR ; il ne peut être communiqué à des tiers et/ou reproduit sans l’autorisation préalable écrite d ’EADS CCR et.
HH20 vs. 2L20 dans les tropiques Etat moyen SST vs. obs.
High resolution simulation of the South Asian monsoon using a variable resolution global climate model Journée MissTerre, novembre 2012 T.P Sabin,
23ème Conférence générale des poids et mesures Paris, novembre ème Conférence générale des poids et mesures Rapport du Comité Consultatif.
NAME: Abdul Saleem Mir Enrollment Number: 49/2010 7th ELECTRICAL
Ocean currents:.
1 Status de l’étude de mesure d’impulsion par MCS Application aux ‘softs’ muons D. Duchesneau Situation actuelle: algorithme de base et vérification avec.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
1 Carte de flux turbulents de chaleur mesurés en surface pour une comparaison avec les modèles Oscar Hartogensis(1), F. Lohou(2), M. Lothon(2), Fleur Couvreux(3),
The story of the train. George Stephenson the inventor of a train for travellers in In 1825, new stage : Stephenson designed a machine that cruises.
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
IP Multicast Text available on
Template Provided By Genigraphics – Replace This Text With Your Title John Smith, MD 1 ; Jane Doe, PhD 2 ; Frederick Smith, MD, PhD 1,2 1.
Brazing TCSPM jaw (Sept. 2016)
Photons Episode 3.
Physical principle Ultrapurification Single pixel detector Electronics
WP5 : Initial design of the glider
The Météo-France operational SAR model
The CNRM-CM5 global climate model: description and basic evaluation
The Ovide program Ovide contributes to the monitoring and the understanding of ocean variability in the northern North Atlantic ocean (transports, water.
Quelle efficacité de trace-base (micro) mettre dans le MC OPERA?
Strengths and weaknesses of digital filtering Example of ATLAS LAr calorimeter C. de La Taille 11 dec 2009.
ABAQUS I Summary Program Capability Components of an ABAQUS Model Elements, Materials and Procedures Modules (analysis, pre and post processing) Input.
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
MATCHSLIDE : INT contribution Patrick HORAIN Hichem ATTI Waheb LARBI Presented as : "TELESLIDE: Technical aspects ", Jacques Klossa & Patrick Horain, Joint.
Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics.
CERES - WHEAT Realised by : Yassine ADRAB Supervised by: Dr. Abdellah ABOUDRARE National School of Agriculture Meknès
Backscattering bursts at Ka-band over land using SARAL data
CRG TM for YETS November 6th 2017.
Analysis of 2016 December pollution episode over IDF
MISSTERRE, Toulouse, June 2011
Arch. Hydrobiol. I 100 I I Stuttgart, Mai 1984
INVERTER LOAD SPEED CONTROLLER Power demand Speed reference ENGINE 230/400V 50Hz/60Hz PMGPMG 1 f = Hz Speed =var Island Operation of the Adjustable.
Phase-Locked Loop Design S emiconducto r S imulation L aboratory Phase-locked loops: Building blocks in receivers and other communication electronics Main.
1 ISO/TC 176/SC 2/N1219 ISO 9001:2015 Revision overview - General users July 2014.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 1-1 Chapter 1 Introduction and Data Collection Basic Business Statistics 10 th Edition.
G. Peter Zhang Neurocomputing 50 (2003) 159–175 link Time series forecasting using a hybrid ARIMA and neural network model Presented by Trent Goughnour.
Lect12EEE 2021 Differential Equation Solutions of Transient Circuits Dr. Holbert March 3, 2008.
The AquiFR hydrogeological modeling platform.
Forum national sur l’IMT de 2004.
Vulnerability Analysis by : Wail Belhouchet Dr Djouad Tarek 1.
Manometer lower pressure higher pressure P1P1 PaPa height 750 mm Hg 130 mm higher pressure 880 mm Hg P a = h = +- lower pressure 620 mm Hg.
Presented by : HAMDI Yosra Faculty of science of Bizerte 1 1.
POWERPOINT PRESENTATION FOR INTRODUCTION TO THE USE OF SPSS SOFTWARE FOR STATISTICAL ANALISYS BY AMINOU Faozyath UIL/PG2018/1866 JANUARY 2019.
BIENVENUE. Sommaire Maison Intelligente La Domotique ? Qu'est ce que c'est la domotique ? Détails et exemple Ma partie dans ce projet Détails de mon projet.
The ICA Formula and Double Slope S-N curves 26/04/2019
1 Sensitivity Analysis Introduction to Sensitivity Analysis Introduction to Sensitivity Analysis Graphical Sensitivity Analysis Graphical Sensitivity Analysis.
CELL DYNAMICS IN SOME BLOOD DISEASES UNDER TREATMENT
Le Climat : Un dialogue entre Statistique et Dynamique
The MerSea System: towards Marine Core Services for GMES
Reporting on national biodiversity strategies,
INS Tunisia, Towards a fully SDMX compliant Information system
Wind Wave and Storm Surge Workshop Halifax 16-20/06/03 Wind Wave and Storm Surge workshop-Halifax 16-20/06/03 SWELL WAVES : concepts and basis Jean-Michel.
IMPROVING PF’s M&E APPROACH AND LEARNING STRATEGY Sylvain N’CHO M&E Manager IPA-Cote d’Ivoire.
M’SILA University Information Communication Sciences and technology
Transcription de la présentation:

L’assimilation des spectres de Sentinel 1-A dans le modèle MFWAM : Conséquences sur le couplage avec l’océan L. Aouf (1), A. Dalphinet (1) et H. Giordani (2) (1) Météo-France, DIROP/MAR, Toulouse (2) CNRM/GAME, Météo-France, Toulouse Journées GMMC, 7-9 Juin 2016, Toulon

MOTIVATION Améliorer la prévision des propriétés directionnelles de la houle dans le modèle de vagues MFWAM : confirmer l’expérience de l’utilisation des spectres SAR d’Envisat. Implémentation de procédure de contrôle de qualité sur les produits SAR-L2 de Sentinel-1A : préparation pour l’opérationnel Evaluation de l’impact de l’assimilation des spectres SAR-L2 de S-1A (Wave mode 1 &2) dans le modèle MFWAM. Quelles conséquences pour le couplage avec un modèle d’océan (1-D couche de mélange)

Operational global wave forecasting system at Météo-France Two global wave models MFWAM (0.5°) forced by analyzed ARPEGE and ECMWF winds.  MFWAM uses the new source terms developed in Ardhuin et al (2010).  The model was upgraded since november 2014 with improvements from the work in Mywave project (final report 2014). In operations assimilation 6 hours: Jason-2 SARAL since 10 December 2013 Cryosat-2 since 23 April 2014 Snapshots of SWH on 19 October 2104 at 0:00 (UTC) JA2SRLCR-2

Control of MFWAM(Global-CEP) with altimeters 12-hour forecast of SWH Comparison with altimeters Jason-2 and SARAL Since the upgraded version of MFWAM the normalized Scatter index of SWH ~ < 10 % in the 12-hour forecast Thanks to upgraded version (Mywave )

Pliusieurs modes : StripMap (SM) Interferometric Wide Swath Extra-Wide swath (EW) Wave mode (two look directions 23° and 36.5° WV 1 & 2) Sentinel-1 carries a single C-band synthetic aperture radar instrument (C-SAR) operating at C-Band (centre frequency of GHz). A right- looking active phased array antenna providing fast scanning Level 2 products Ocean Wind field (OWI) Ocean Swell Spectra (OSW) Surface Radial Velocity (RVL)

Daily coverage of S-1A (WM-1 & 2) 23 April 2016 The SAR (L2) wave spectra of Sentinel- 1A Two wave modes of S-1A provides wave Spectra with a resolution of 60 frequencies from 0.04 to 0,23 Hz and 72 directions (by step of 5°) S-1A wave spectra along track spaced by 100 km

MFWAM wave spectra FG SAR L2 wave spectra Partitioning wave trains Cross assignment FG and SAR partitions Optimal interpolation OI Mean energy and wave numbers Reconstruction of analysed wave spectra Description of the assimilation of SAR wave spectra

The auto-correlation functions of the model MFWAM are computed by using difference between forecasted swell wave parameters for different ocean basins. Optimized correlation model for the assimilation Atlantic oceanPacifficTropics a Atlantic0,93 Pacific0,76 Indian0,64 Tropics0,66 Best fit of exp(d/ ) a d is the distance Correlation length of 250 km swell mean period

Description of test runs New processing has been implemented for the level 2 wave products of S-1A - period from 8 to 30 Avril 2016 The model MFWAM with grid size of 0.5° and the wave spectrum in 24 directions and 30 frequencies (starting 0.035Hz). The model MFWAM is driven by 6-hourly ECMWF analysed winds) Performed runs : - run with wave spectra from both WM 1 & 2 of Sentinel-1A - run with wave spectra from both WM 1 of S-1A - run with wave spectra from both WM 2 of S-1A - run with wave spectra (WM 1&2) of S-1A and altimeter data from Saral

Impact of the assimilation of sentinel-1A (WV 1 &2) in the forecast period Difference of wave parameters with and without assimilation of S1A Snapshots with a step of 6 hours in the period of forecast starting on 20 April 2016 at 0:00 UTC until 22 April at 0:00 Swell wave height Mean wave period

Validation of the assimilation of S1-A wave spectra Significant wave heights April 8 to 30, 2016 Comparison with SARAL and JA2 Bias = 0.02 SI = 11.2% RMSE = 11.2% Slope = 1.01 Intercept = Bias=-0.03 SI=11.8% RMSE=11.8% Slope=1.05 Intercept=-0.11 Scatter index is slightly improved by 5 % MFWAM-ASSI-S1A MFWAM-NOASSI Better slope

High Lat |  |> 50° Intermediate lat 20°<|  |<50° Tropics |  |<20° Comparison with Ja-2 and SARAL Performance of Scatter index of SWH (%) in different ocean basins Performance of scatter index of SWH (%) Performance of Scatter index of SWH (%) in different ocean basins Impact of the assimilation of S1-A spectra (WM 1 & 2) Period of April 2016 Improvements in all ocean basins (stronger impact in high latitudes)

Impact of the assimilation of S1-A spectra (WM 1 & 2) Period from Dec-Jan 2016 Validation with Jason-2 and SARAL Statistical analysis High Lat |  |> 50° Intermediate lat 20°<|  |<50° Tropics |  |<20° WV-1 slightly better in the trop and intermed

The impact of the assimilation in the forecast period September 2015 Validation with Jason-2 and Saral Normalized Scatter index of SWH (%) Black line : MFWAM without assimilation Blue line : MFWAM with S1A Red line : MFWAM with altimeters (CR2+SRL) and S1A

Validation with buoys wave data in pacific ocean Thanks to NDBC Hawaii-Hilo-SW Stratus Scatter index (%) Period of April 2016 Strong reduction (~39%) of SI for peak period at Hilo-SW buoy without assimilation with SAR (1&2) The model is good on SWH but not on Tp

The water side stress (breivik et al. 2014) computed by the wave model is :  oc =  a -  in -  ds, where  a is the air side stress,  in is the momentum flux absorbed by the waves and  ds is the momentum injected by breaking waves to the ocean Impact on coupling parameters Difference of stress (%) with and without SAR spectra Snapshots on 29 April 2016 at 0:00 (UTC) Example of ratio  oc /  a

Temperature V-current U-current Impact of SAR spectra on the 1-D mixed layer South-west Hawaii, Hilo 1-D ocean mixed layer (Giordani et al. 2005) Is forced by the stress provided by the model MFWAM (with and without SAR) during 22 days. 4 pronostic variables (U,V, Temp, Salinity) are analysed at Hilo-SW position The assimilation of SAR enhances the difference for the current and temperature in swell dominant sea state (Hilo-SW) Without assimilation with assimilation of SAR depth

 l’impact de l’assimilation des spectres SAR de S-1A est positif dans les périodes d’analyse et de prévision (comparaison avec saral et Jason-2)  Bientôt une mise opérationnel de l’assimilation des spectres de S-1A (dès que les données seront dispo sur le GTS)  La couche de mélange océanique est sensible à l’assimilation des spectres SAR. Les variations en courants et température ont été bien identifiées.Des travaux sont en cours pour valider cette signature et étendre les tests à un modèle d’océan 3D (voir poster 73 de S. Law-Chune et al.)  Des tests d’assimilation (et OSSE) avec plusieurs sources de spectres (S-1A et 1B) seront effectués pour préparer la mission CFOSAT. Conclusions et travaux futurs