Analuse Globalisée des Données d ’Imagerie Radiologique Ecole Grid5000, Grenoble, 10 mars 2006 Recalage d'images médicales Validation expérimentale sur.

Slides:



Advertisements
Présentations similaires
Environmental Data Warehouse Cemagref, UR TSCF, TR MOTIVE 2011 – projet Miriphyque.
Advertisements

Revenir aux basiques !. 1 Revenir aux basiques Processus Nécessité daméliorer la Maîtrise les Offres et Projets: lanalyse des causes racines montre un.
How to solve biological problems with math Mars 2012.
From Image Registration in Oncology to Complex Workflows on the GRID
Analyse Globalisée des Données d’Imagerie Radiologique
Analuse Globalisée des Données d Imagerie Radiologique Analyse Globalisée des Données dImagerie Radiologique Cécile Germain-Renaud
8th International Conference on psychosocial and economic aspects of HIV infection
GREDOR - GREDOR - Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables How to plan grid investments smartly? Moulin de Beez, Namur.
CNRS GRID-FR CA Sophie Nicoud
Making PowerPoint Slides Avoiding the Pitfalls of Bad Slides.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
1 Carte de flux turbulents de chaleur mesurés en surface pour une comparaison avec les modèles Oscar Hartogensis(1), F. Lohou(2), M. Lothon(2), Fleur Couvreux(3),
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
Traffic Sign Recognition Jacob Carlson Sean St. Onge Advisor: Dr. Thomas L. Stewart.
 Components have ratings  Ratings can be Voltage, Current or Power (Volts, Amps or Watts  If a Current of Power rating is exceeded the component overheats.
IP Multicast Text available on
1 ISO/TC 176/SC 2/N1282 ISO 9001:2008 to ISO 9001:2015 Summary of Changes.
Template Provided By Genigraphics – Replace This Text With Your Title John Smith, MD 1 ; Jane Doe, PhD 2 ; Frederick Smith, MD, PhD 1,2 1.
Subject: CMS(Content Management System) Université Alioune DIOP de Bambey UFR Sciences Appliquées et Technologies de l’Information et de la Communication.
Principaux besoins de l’industrie aéronautique Le 26 mars 2014,
Réunion service Instrumentation Activités CMS-Traces
Technologies de l’intelligence d’affaires Séance 14
Projet eXtreme DataCloud XDC
Strengths and weaknesses of digital filtering Example of ATLAS LAr calorimeter C. de La Taille 11 dec 2009.
Frédéric Desprez LIP ENS Lyon / INRIA GRAAL Research Team
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
MATCHSLIDE : INT contribution Patrick HORAIN Hichem ATTI Waheb LARBI Presented as : "TELESLIDE: Technical aspects ", Jacques Klossa & Patrick Horain, Joint.
Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics.
Innovative Plants For a green and technologic future.
PRODUCTION LOGISTICS MANAGEMENT. I l c p INTRODUCTION PRODUCTION LOGISTIC CONCLUSION Te sit nusquam mediocrem. Fastidii dissentias nam an, simul deleniti.
Résumé CB WLCG du 3 février 2005
Analysis of 2016 December pollution episode over IDF
1. Financial (Accounting) Statements  Financial or Accounting statements are used for reporting corporate activity. 2 For Stakeholders.
A PCA-based feature extraction method for face recognition — Adaptively weighted sub-pattern PCA (Aw-SpPCA) Group members: Keren Tan Weiming Chen Rong.
1 ISO/TC 176/SC 2/N1219 ISO 9001:2015 Revision overview - General users July 2014.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 1-1 Chapter 1 Introduction and Data Collection Basic Business Statistics 10 th Edition.
G. Peter Zhang Neurocomputing 50 (2003) 159–175 link Time series forecasting using a hybrid ARIMA and neural network model Presented by Trent Goughnour.
Author : Moustapha ALADJI PhD student in economics-University of Guyana Co-author : Paul ROSELE Chim HDR Paris 1-Pantheon Sorbonne Economics / Management.
Essai
Distributed Radiation Detection Daniel Obenshain Arthur Rock SURF Fellow.
Introduction to Computational Journalism: Thinking Computationally JOUR479V/779V – Computational Journalism University of Maryland, College Park Nick Diakopoulos,
High-Availability Linux Services And Newtork Administration Bourbita Mahdi 2016.
La grille EGEE dans le monde et à Orsay
Qu’est-ce que tu as dans ta trousse?
and the evaluation of interactive systems.
Efficacité des algorithmes
Benchmarking noise policies
Information available in a capture history
CEVI The European confederation of Independent winegrowers is the only europen organisation which gathers and represents the independent winegrowers in.
Révision – Phrases Importantes
Definition Division of labour (or specialisation) takes place when a worker specialises in producing a good or a part of a good.
Introduction à GENIUS et GILDA
Roots of a Polynomial: Root of a polynomial is the value of the independent variable at which the polynomial intersects the horizontal axis (the function.
By:- Israr K. Raja Islamabad, Pakistan. Supply Chain Activities those Affect the Financial Performance Supply chain managers make decisions and use organizational.
Manometer lower pressure higher pressure P1P1 PaPa height 750 mm Hg 130 mm higher pressure 880 mm Hg P a = h = +- lower pressure 620 mm Hg.
BRMS Implementation Status Update Template designed by 18-July-2015.
Rapid Deployment Solution Real Estate Q1 and Q Best Practice Flow Diagrams.
Making PowerPoint Slides Avoiding the Pitfalls of Bad Slides.
POWERPOINT PRESENTATION FOR INTRODUCTION TO THE USE OF SPSS SOFTWARE FOR STATISTICAL ANALISYS BY AMINOU Faozyath UIL/PG2018/1866 JANUARY 2019.
MESURE DE RESULTATS DES IRR
C021TV-I1-S4.
Avoiding the Pitfalls of Bad Slides Tips to be Covered Outlines Slide Structure Fonts Colour Background Graphs Spelling and Grammar Conclusions Questions.
Laboratory Information Management Systems (LIMS) Lindy A. Brigham Div of Plant Pathology and Microbiology Department of Plant Sciences PLS 595D Regulatory.
University : Ammar Telidji Laghouat Faculty : Technology Department : Electronics 3rd year Telecommunications Professor : S.Benghouini Student: Tadj Souad.
C’est quel instrument?.
Soutenance de thèse: Okba Taouali 1 02/08/2019 Fathia AZZOUZI, Adam BOURAS, Nizar JEBLI Conceptual specifications of a cooperative inter- machines dialogue.
LF
Over Sampling methods IMBLEARN Package Realised by : Rida benbouziane.
IMPROVING PF’s M&E APPROACH AND LEARNING STRATEGY Sylvain N’CHO M&E Manager IPA-Cote d’Ivoire.
M’SILA University Information Communication Sciences and technology
Transcription de la présentation:

Analuse Globalisée des Données d ’Imagerie Radiologique Ecole Grid5000, Grenoble, 10 mars 2006 Recalage d'images médicales Validation expérimentale sur Grid5000 et EGEE Johan Montagnat, Tristan Glatard, Xavier Pennec Pierre-Yves Bondiau

Analyse Globalisée des Données d’Imagerie Radiologique Recalage d'images médicales AvantAprès

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 3 Anatomically meaningful deformation Registration in 5 min on 15 PCs Adaptive non-stationary visco-elastic inter-subject registration Image Registration for Oncology

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 4 Image Registration for Oncology Registration / segmentation are basic components of medical image analysis – Registration: finding homologous points / tranformation – Segmentation: give anatomical label to each image point Registration for brain radiotherapy – Planning  Fusion of image modalities (multimodal, rigid)  Warp atlas to patient image for segmentation (mono-modal, non-rigid)  Definition of Target volumes and Organs at risk: dose optimization – Follow-up (monomodal rigid) (ch 3/4)

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 5 Image Registration for Oncology There is no universal registration algorithm – More than 600 references on medical image registration in 1997 – More than 100 papers each year… (70 at MICCAI 2004 only) Registration algorithms as Grid services – Use up to date algorithm – Evaluation / comparison of algorithm performances Challenges – Inter-operability (coordinate systems, transformation format…) – Ontology describing data, registration problems and algorithms

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 6 Performance evaluation and validation Synthetic data (simulation): – Available ground truth – Difficult to identify and model all sources of variability Real data in a controlled environment (Phantom): – Possible gold standard – Performances evaluation in specific conditions  Difficult to test all clinical conditions  May hide a bias Image database representative of the clinical application – Usually no ground truth – Should span all sources of variability

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 7 Bronze standard Bronze standard: The exact result is an unknown variable – Unbiased estimation: use redundant information  use many different registration algorithms (average biases, so that precision ~ accuracy)  Use many different data (redundant information to ensure precision)  Average transformations (maximal consistency) Best explanation of the observations (ML) : – Robust Fréchet mean – Robust initialisation and Newton gradient descent Result

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 8 Multi-modality usecase

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 9 Bronze standard workflow T, s

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 10 MOTEUR workflow engine Development of a new execution engine : MOTEUR – compatible with Taverna workflow description language (Scufl) – Allowing data and component parallelism – Implementing result traceability Interfaces – Web Services – GridRPC (DIET middleware) Execution infrastructures > 2000 CPUs OAR batch submitter research infrastructure > CPUs, 5 PB LCG2 middleware (migration to gLite) production infrastructure

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 11 workflow manager Service-based approach Grid User Interface Grid Resources Input 0 Service B Output 0 Input 0 Input 1 Service A Output 0 Data 0 Img Ref 0 Data 1 Img Ref 1 Data 2 Img Ref 2 Img Ref 1 Img Ref 2

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 12 Test database acquired at the oncology department of Centre Antoine Lacassagne (Nice) MR T1 Images 256x256x120 voxels 16 bits/voxel (7.8 MB) 126 image pairs Test database

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 13 EGEE vs Grid5000 Production grid (24/7 load) vs Experimental grid (resources volatility) EGEEGrid5000 Resources> 180 centers9 clusters > CPUs> 2000 CPUs > 5 PB~ TB Workload MgtResource BrokerGridOAR Batch SchedulerOAR (PBS, LFS...) Data transferGridFTPNFS

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 14 Workfload Management System Short jobs (1 min), constant load (n jobs), measurements over 3 hours periods

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 15 Data Management System Small number of data jobs (5), constant data size (7.8 MB), measurements over 3 hours periods

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 16 Experimental results on the Bronze Standard application Critical size of Grid5000 not reached.

Analyse Globalisée des Données d’Imagerie Radiologique Ecole Grid5000, 10 mars 2006, Johan Montagnat (I3S) 17 Conclusions Grid modeling – Almost linear response time – Strong variability – Trade-off between grid pay-off and scale/achievable load MOTEUR inter-grid workflow manager – Load balance between different grids... –... should consider data transfer cost Real medical application for testing Data flow dominating medical applications – Need for a real data management service – Data manipulation cost to be taken into account – MOTEUR is relying on the grid data manager to avoid useless data transfer Interest in experimenting GridOAR for multi-cluster use of Grid5000