Introduction au module « immunité anti-infectieuse »
Trois problèmes Relation hôte-agent infectieux Aspects normaux Réponses anti-virales Réponses anti-bactériennes Bactéries extracellulaires Bactéries intracellulaires Aspects pathologiques « effets secondaires » des réponses Immunité naturelle : inflammation Immmunité adaptative : hypersensibilité Déficit de réponse : immunodéficience Âge Acquise : SIDA
Aspects normaux Infections virales Infections bactériennes Parasites Bactéries extracellulaires Bactéries intracellulaires Parasites
Défenses de barrière Epithelia Escalator muco-ciliaire Acidité gastrique Peptides antibactériens Flores commensales
Le rôle central des récepteurs Toll dans le déclenchement des réponses anti-infectieuses
Rôle central des récepteurs Toll
Infections virales Particules virales libres Interaction avec un récepteur cellulaire Infection cellulaire Eventuelle phase de latence Expression de protéines virales par la cellule infectée Synthèse de nouveaux virions et recrutement de nouvelles cellules
Intervention précoce : neutralisation des particules virales libres par des anticorps neutralisants Intervention aux sites d’entrée du virus dans l’organisme Rôle importante mais pas exclusif des IgA sécrétoires (il y a des anticorps neutralisants dans le sang)
Anticorps neutralisants Plusieurs types de mécanismes Antagonisme de récepteurs viraux intervenant dans l’adhésion aux épithélias ou aux cellules cibles Activation du complément et lyse des virions enveloppés Agglutination et opsonisation avec facilitation de la phagocytose
La réponse humorale est généralement inutile lors d’une primo-infection virale : le temps nécessaire à l’obtention de titres élevés d’anticorps est trop long
… par contre, l’obtention d’un titre élevé d’anticorps spécifiques (par exemple IgA) après une première infection ou un vaccin peut être protectrice
Les défenses antivirales de seconde ligne Un médiateur soluble de l’immunité naturelle : les interférons –a et -b Sécrétion induite dans plusieurs types cellulaires par le RNA viral double brin Inhibe la synthèse de protéines en favorisant la dégradation des mRNA (L-RNAse) et en inactivant un facteur d’initiation de la translation (PKR)
Les défenses antivirales de seconde ligne Dès que les premières cellules sont infectées, seuls les lymphocytes T cytotoxiques et leurs auxiliaires : les lymphocytes T CD4+ de type Th1, peuvent contrôler l’infection virale Toute cellule infectée exprime des peptides viraux présentés par des molécules CMH de classe I La lyse des cellules infectées interrompt la synthèse de nouveaux virion et livre les virions déjà synthétisés à l’action neutralisante des anticorps
Cinétique de la réponse cytotoxique antivirale En cas de primoinfection, les réponses cytotoxiques deviennent détectables après 3-4 jours mais ne culminent qu’après 10 jours
Mécanismes d’échappement des virus Antagonisme des effets des interférons-a et -b Virus de l’hépatite C : protéine qui inhibe la PKR Antagonisme de la présentation des peptides viraux par le CMH Herpès simplex : inhibition des transporteurs de peptides (protéines TAP)
Transport des peptides vers le réticulum endoplasmique Transporters associated with antigen processing
Antagonisme de la présentation des peptides viraux par le CMH Inhibition des transporteurs de peptides (protéines TAP) (Herpès simplex) inhibition de l’expression des molécules CMH de classe I (CMV) Inhibition de l’expression des molécules CMH de classe II (CMV, rougeole, VIH)
La parade à la perte d’expression des molécules CMH I par les cellules infectées : Les cellules natural killer (NK)
Les récepteurs KIR (Killer Inhibitory Receptors)
Cinétique de la réponse NK
Mécanismes d’échappement des virus Antagonisme des effets des interférons-a et -b Antagonisme de la présentation des peptides viraux Variation antigénique (influenza, rhinovirus, VIH) « C’est toujours comme la première fois » Induction d’une synthèse de cytokines immunosuppressives pour les réponses cytotoxiques VIL-10 (EBV)
Un exemple : le virus influenza
Influenza Le récepteur viral : la glycoprotéine HA (hémagglutinine) qui se lie à des molécules d’acide sialique des glycoprotéines et glycolipides des cellules de l’hôte Lors d’une réponse secondaire : rôle protecteur (neutralisant) d’anticorps dirigés contre HA
Mais variations antigéniques majeures d’influenza! Deux types de variations Antigenic drift (dérive antigénique) Accumulation progressive de mutations ponctuelles avec modification lente des déterminants de l’HA Les anticorps neutralisants gardent une certaine compétence Antigenic shift (changement antigénique) Modification totale et subite des déterminants Perte de compétence totale et subite des ac neutralisants
Drift et shift
Infections virales Primaires : rôle essentiel de l’immunité à médiation cellulaire (Tc et Th1) pour mettre un terme à l’infection Secondaires : dans certains cas, rôle protecteur des anticorps neutralisants Persistantes : rôle essentiel de l’immunité à médiation cellulaire pour limiter le degré de réplication virale (virus de la famille herpès, HIV,…)
Infections bactériennes Bien distinguer les bactéries purement extracellulaires (les plus fréquentes) des bactéries qui peuvent « se cacher » à l’intérieur des cellules
Infections par des bactéries extracellulaires Rôle fondamental des anticorps et des phagocytes (polynucléaires neutrophiles et macrophages) Pas de rôle significatif des lymphocytes T cytotoxiques et des cellules NK
Infections par des bactéries extracellulaires Rôle fondamental des anticorps Oui mais ne pas oublier les lymphocytes T CD4+ auxiliaires qui permettent leur commutation isotypique et leur maturation d’affinité (Th2)
Anticorps et bactéries extracellulaires p.ex. diphtérie, tétanos
Anticorps et bactéries extracellulaires Essentiellement bactéries Gram-
Anticorps et bactéries extracellulaires L’opsonisation est ESSENTIELLE pour la phagocytose des bactéries qui possèdent des capsules polysaccharidiques (Pneumocoque, hemophilus influenzae, méningocoque)
Bactéries intracellulaires Exemple : mycobactéries (tuberculose) Peu d’efficacité des anticorps Importance de l’immunité à médiation cellulaire Les systèmes microbicides du macrophage ne sont capables de tuer les BK que s’il y a eu exposition à l’interféron-g
Mycobacterium tuberculosis
Mycobacterium tuberculosis Les souris IFN-g KO meurent après inoculation de BCG (bacille tuberculeux atténué) Il y a beaucoup d’IL-12 dans le liquide pleural des patients porteurs de lésions pulmonaires BK
Une forte réponse de type Th1 est indispensable pour contrôler une tuberculose
Parasitoses Infection chronique par certains vers : développement d’une réponse de type Th2 avec mobilisation des IgE et des éosinophiles (qui jouent le rôle de cellules K et exercent un phénomène d’ADCC contre le parasite) Accroissement important des IgE et des éosinophiles dans les infestations chroniques par des vers
Inflammation
Le rôle central des récepteurs Toll dans le déclenchement des réponses anti-infectieuses
NF-kB : le facteur transcriptionnel de l’inflammation
Gènes dont la transcription est sous le contrôle de NF-kB
Inducteurs de NF-kB
Donc boucle d’amplification positive de la synthèse de TNF-a qui passe par le NF-kB
Régulation de l’activité NF-kB par le facteur I-kB lui même contrôlé par la kinase IKK (I-kB Kinase) phosphorylation ubiquitination dégradation dans le protéasome
Synthèse accrue d’Ik-B et/ou antagonisme direct de NF-kB Sels d’or Corticoïdes : Synthèse accrue d’Ik-B et/ou antagonisme direct de NF-kB
Hypersensibilité Effet « secondaire » d’une réponse de l’immunité adaptative
Les hypersensibilités Classification de Gell et Coombs
Maladie sérique
Maladie sérique Symptômes Fièvre Eruption Adénopathies Arthrite Glomérulonéphrite
Des lymphocytes B pas comme les autres
Lymphocytes B de la zone marginale Réponses T indépendantes Autoanticorps DNA, facteur rhumatoïde, etc.
Complexes immuns et cellules Une introduction à l’autoimmunité
Les hypersensibilités Classification de Gell et Coombs
Phénomènes de type IV Aussi DTH : delayed type hypersensitivity Hypersensibilité retardée Implication de l’immunité à médiation cellulaire et des réponses de type Th1 Recrutement local de macrophages par les cytokines et chimiokines des lymphocytes T auxiliaires activés Si ce recrutement devient chronique : formation d’un granulome
Phénomènes de type IV le recrutement des macrophages prend plus de temps que celui des neutrophiles (dans les phénomènes de type III) la localisation est très différente des types I, II et III : les phénomènes de type IV sont toujours localisés dans un tissu
Phénomènes de type IV interviennent dans le contrôle de certaines maladies infectieuses ex. granulomes tuberculeux interviennent dans beaucoup de maladies autoimmunitaires
Phénomènes de type IV Diabète de type I