D’Euclide à Legendre, autour du 5ème Postulat

Slides:



Advertisements
Présentations similaires
Licence pro MPCQ : Cours
Advertisements

Chapitre 1 :Comment démontrer que deux droites sont parallèles ?
CHAPITRE 6 Triangles-Médiatrices
LES MESURES ET LES ANGLES
La symétrie centrale (2)
Axe de symétrie (11) Figures symétriques
Droites perpendiculaires (9)
TRIANGLE & PARALLELES Bernard Izard 4° Avon TH
JJ Calmelet septembre La géométrie de l'école au collège C1 et C2 Géométrie de la perception Est vrai ce que je vois Boîte à outils géométrique.
La diapo suivante pour faire des algorithmes (colorier les ampoules …à varier pour éviter le « copiage ») et dénombrer (Entoure dans la bande numérique.
Construction des 3 hauteurs
SYMETRIE CENTRALE OU SYMETRIE PAR RAPPORT A UN POINT.
LES TRIANGLES 1. Définitions 2. Constructions 3. Propriétés.
Mise en situation : type cycle 3
Pour tout entier n,n est entier ou irrationnel Un beau théorème absent de larithmétique dEuclide (Livres 7 à 9 des Éléments)
- Chap 11- Symétrie axiale
ORTH 1 CE2 Je sais écrire sans erreur les pluriels des noms se terminant par s, x, z.
À l’origine de la géométrie hyperbolique
Mr: Lamloum Med LES NOMBRES PREMIERS ET COMPOSÉS Mr: Lamloum Med.
D’Euclide à Legendre, autour du 5ème Postulat
Texte de lédition dHeiberg : 486 propositions Commandino : liste denviron 190 propositions « démontrées dans ce livre en plus de celles qui le sont par.
Chapitre 2 Triangles.
TRIANGLE Cercle circonscrit à un triangle
Le théorème de Pythagore
DEuclide à Legendre, autour du 5 ème Postulat III - Legendre, un géomètre entêté
Chapitre 4 Symétrie centrale.
Unité 4: Formes et espace Introduction
D’Euclide à Legendre, autour du 5ème Postulat
1.2 COMPOSANTES DES VECTEURS
Titre : Implémentation des éléments finis sous Matlab
Lignes trigonométriques.
B C A PROBLEME (12 points)Lille 99
Généralités sur les constructions (1)
LES NOMBRES PREMIERS ET COMPOSÉS
Éléments de correction. EXERCICE n°1 ( 4 points )
Représentation des systèmes dynamiques dans l’espace d’état
Représentation des systèmes dynamiques dans l’espace d’état
1.1 LES VECTEURS GÉOMÉTRIQUES
Quelques propriétés des figures géométriques
PYTHAGORE ! VOUS AVEZ DIT THEOREME DE PYTHAGORE
Parallèles. On appelle parallèles, des droites situées dans un même plan et n’ayant aucun point commun. Théorème: Deux droites perpendiculaires à une troisième.
Les Constructions avec
CONSTRUCTIONS GÉOMÉTRIQUES
Sommaire Calculs simples Distributivité simple
Poitier (juin 1999) problème du brevet
Égalité des figures Si une figure peut être obtenue à partir d’une autre par opération d’un glissement on dit que les deux figures sont directement égales.
Les Triangles 1. Inégalité triangulaire
Constructions Propriétés Fiche démontrer.
Les polygones (5) Définition d’un polygone
(d) (d1) (d) (d) (d1) Le vocabulaire Un point
(Poitiers 96) Soit un triangle ABC rectangle en A tel que :
LES TRIANGLES.
Constructions géométriques élémentaires
Les 20 Questions Sujet: La géométrie.
AXES DE SYMETRIE 1. APPROCHE EXPERIMENTALE
Triangle rectangle et cercle circonscrit
TEST QUIZ Géométrie Niveau Collège 5KNA Productions 2014.
Dans le cadre d’un P.E.R. sur les distances inaccessibles, le travail de la similitude en 4 e à partir du théorème de Thalès AMPERES Groupe didactique.
Analyse de la proposition d’enseignement du cercle circonscrit au triangle Type de tâches et tâches  Un seul type de tâches T : « déterminer le nombre.
MSN 21 Représenter des figures planes à l’aide de croquis (triangle, carré, rectangle, cercle) Le croquis est à considérer comme support de réflexion Reconnaître.
Des outils pour penser l’enseignement et l’apprentissage Notion d’O.M. : organisation mathématique ponctuelle Le modèle praxéologique Que devront savoir,
Programmation CM1 6 étapes clés pour construire les nombres décimaux. Présentationfractions décimales Présentation des fractions décimales: situations.
Contribution de Bordeaux Enseigner le cosinus en 4ème.
Un usage de la notion d’O.M. pour la préparation de l’épreuve sur dossier du CAPES.
Evaluation CE Une analyse des résultats de la circonscription Arcachon Sud DisciplineChampCompétence Item Fichier de compilation des résultats des.
Nouveaux programmes de mathématiques cycles 3 et 4
AMPERES Apprentissages Mathématiques et Parcours d'Études et de Recherches pour l'Enseignement Secondaire « Triangles » Trois contributions : équipes de.
Analyses des situations didactiques II - Analyse théorique.
Apprentissages géométriques
Introduction Le mathématicien
Transcription de la présentation:

D’Euclide à Legendre, autour du 5ème Postulat I - Les Éléments comme introduction aux géométries non euclidiennes

Autour du 5ème Postulat A – Deux exercices de construction géométrique 1) Un segment [AB] étant donné, construire un triangle équilatéral de côté [AB]. (Éléments Livre I, Prop 1). 2) Un segment [AB] étant donné, construire un carré de côté [AB]. (Éléments Livre I, Prop 46). Question 1 : Quels sont les implicites que vous devez admettre pour enseigner ces constructions à un élève de collège ? Question 2 : Quelles sont les définitions que vous devez utiliser ? Question 3 : De quelles propriétés (propositions et théorèmes) vous êtes- vous servi ? Question 4 : Quelles sont les propriétés utilisées qui sont conséquentes ou équivalentes au 5ème Postulat d’Euclide ? Pouvez-vous vous en passer ?

Autour du 5ème Postulat A – Deux exercices de construction géométrique Construire signifie : 1 - Tracer la figure sur une feuille de papier avec comme seuls instruments une règle bien droite (tiens tiens ?) non graduée et un compas. 2 - Donner l’algorithme de construction qui vous paraît le plus simple (la suite des opérations graphiques à réaliser pour obtenir le résultat demandé), 3 - Justifier par des arguments géométriques et logiques que la construction proposée conduit effectivement au résultat recherché. Étudier notamment l’existence et l’unicité de ce résultat.

Autour du 5ème Postulat A – Réponses d’Euclide. PREMIÈRE PROPOSITION : Sur une droite donnée et finie, construire un triangle équilatéral. EXPOSIT1ON. Soit AB une droite donnée et finie. DÉTERMINATION. Il faut construire sur la droite finie AB un triangle équilatéral. CONSTRUCTION. Du centre A et de l’intervalle AB, décrivons la circonférence B (dem. 3) ; et de plus, du centre B et de l'intervalle BA, décrivons la circonférence AE ; et du point , où les circonférences se coupent mutuellement, conduisons aux points A, B les droites A, B (dem. 1). DÉMONSTRATION. Car, puisque le point A est le centre du cercle B, la droite A est égale à la droite AB (déf. 15); de plus, puisque le point B est le centre du cercle AE, la droite B est égale à la droite BA ; mais on a démontré que la droite A était égale à la droite AB ; donc chacune des droites A, B est égale à la droite AB; or, les grandeurs qui sont égales à une même grandeur, sont égales entre elles (not. 1) ; donc la droite A est égale à la droite B; donc les trois droites A, AB, B sont égales entre elles. CONCLUSION. Donc le triangle AB (def. 24) est équilatéral, et il est construit sur la droite donnée et finie AB. Ce qu'il fallait faire.  A B  E

Autour du 5ème Postulat A – Réponses d’Euclide.  PROPOSITION 46 : Décrire un carré avec une droite donnée. Soit AB la droite donnée ; il faut décrire un carré avec la droite AB. Du point A, donné dans cette droite, conduisons A perpendiculaire à AB (prop. 11) ; faisons A égal à AB (prop. 3) ; par le point  conduisons E parallèle à AB (prop. 31) ; et par le point B conduisons BE parallèle à A. La figure AEB est un parallélogramme; donc AB est égal à E, et A égal à BE. Mais AB est égal à A ; donc les quatre droites BA, A, AE, EB sont égales entre elles ; donc le parallélogramme AEB est équilatéral. Je dis aussi qu'il est rectangle. Car puisque la droite A tombe sur les parallèles AB, E, les angles BA, AE sont égaux à deux droits (prop. 29) ; mais l'angle BA est droit ; donc l'angle AE est droit aussi. Mais les côtés et angles opposés des parallélogrammes sont égaux entre eux (prop. 34) ; donc chacun des angles opposés ABE, BE est droit ; donc le parallélogramme AEB est rectangle. Mais nous avons démontré qu'il est équilatéral ; donc le parallélogramme AEB est un carré, et il est décrit avec la droite AB ; ce qu'il fallait faire.  B E A 

Autour du 5ème Postulat B – Les Éléments d’Euclide 4 volumes de Bernard Vitrac Texte de François Peyrard de 1819 1990 - 2001

Autour du 5ème Postulat B – Les Éléments d’Euclide, Livre I : 35 définitions, 6 demandes et 9 notions communes (axiomes des grandeurs) 1 - Définitions à distinguer - Définition 10 : Lorsqu’une droite tombant sur une droite fait deux angles de suite égaux entre eux, chacun de ces angles égaux est droit ; et la droite placée au-dessus est dite perpendiculaire à celle sur laquelle elle est placée. - Définition 15 : Un cercle est une figure plane, comprise par une seule ligne qu’on nomme circonférence ; toutes les droites, menées à la circonférence d’un des points [le centre] placés dans cette figure, étant égales entre elles. - Définition 30 : Parmi les figures quadrilatères, le carré est celle qui est équilatérale et rectangulaire. - Définition 35 : Les parallèles sont des droites, qui, étant prolongées à l’infini de part et d’autre, de se rencontrent ni d’un côté ni de l’autre.

Autour du 5ème Postulat B – Les Éléments d’Euclide, Livre I 2 - Les Demandes ou Postulats : Conduire une droite d'un point quelconque à un point quelconque. Prolonger indéfiniment, selon sa direction une droite finie. D’un point quelconque, et avec un intervalle quelconque, décrire une circonférence de cercle. Tous les angles droits sont égaux entre eux. Si une droite, tombant sur deux droites, fait les angles intérieurs du même côté plus petits que deux droits, ces droites, prolongées à l'infini, Se rencontreront du côté où les angles sont plus petits que deux droits. Deux droites ne renferment point un espace.

Autour du 5ème Postulat B – Les Éléments d’Euclide, Livre I 3 - Les notions communes (axiomes des grandeurs) : 1. Les grandeurs égales à une même grandeur, sont égales entre elles. 2. Si à des grandeurs égales, on ajoute des grandeurs égales, les tout seront égaux. 3. Si de grandeurs égales, on retranche des grandeurs égales, les restes seront égaux. 4. Si à des grandeurs inégales, on ajoute des grandeurs égales, les tout seront inégaux. 5. Si de grandeurs inégales, on retranche des grandeurs égales, les restes seront inégaux. 6. Les grandeurs, qui sont doubles d'une même grandeur, sont égales entre elles. 7. Les grandeurs, qui sont les moitiés d'une même grandeur, sont égales entre elles. 8. Les grandeurs, qui s'adaptent entre elles, sont égales entre elles. 9. Le tout est plus grand que la partie.

Autour du 5ème Postulat B – Les Éléments d’Euclide, Livre I : 47 propositions 4 - La structure du Livre I La géométrie neutre ou absolue (sans le 5ème Postulat) 1- Prop. 1 à 3 : constructions de base. Prop 1: Sur une droite donnée et finie, construire un triangle équilatéral 2- Prop. 4 à 8 : propriétés des angles et côtés d’un triangle 3- Prop. 9 et 10 : constructions de bissectrices et de milieux 4- Prop. 11 à 15 : perpendiculaire à une droite et angles de 2 droites Prop 12 : A une droite indéfinie et donnée, et d’un point donné, mener une ligne droite perpendiculaire. 5- Prop 16 à 26 : inégalités d’angles et de côtés dans un triangle Prop 17 : deux angles d’un triangle quelconque, de quelque manière qu’ils soient pris, sont moindres que deux droits. (Théorème de Saccheri: les trois angles d’un triangle sont moindres que deux droits) 6- Prop. 27 et 28 : conditions d’angles impliquant le parallélisme  A B  E A B A   E 

Autour du 5ème Postulat B – Les Éléments d’Euclide, Livre I : 47 propositions 4 - La structure du Livre I b) La théorie des parallèles (avec le 5ème Postulat) 1- Prop. 29 à 32 : propriétés équivalentes au 5ème Postulat. Prop 29 : Une droite qui tombe sur deux droites parallèles, fait les angles alternes égaux… Réciproque de la prop. 28 et contraposée du 5ème Postulat. Prop 31 : Par un point donné, conduire une ligne droite parallèle à une droite donnée. Construction possible en géométrie absolue. Seule l’unicité est conséquence du 5ème Postulat : axiome de Proclus-Playfair-Hilbert. Existence d’un rectangle : axiome de Clairaut. Prop 32 :… les trois angles intérieurs d’un triangle sont égaux à deux droits Conséquence directe du 5ème Postulat. Réciproque vraie : théorème de Saccheri-Legendre, difficile à démontrer. Prop 33 à 45 : Parallélogrammes et méthode des aires Prop. 46 : Décrire un carré avec une droite donnée. Prop. 47 et 48 : Applications, le théorème de Pythagore et sa réciproque. Ainsi nommé par Proclus au Vème siècle après J.C. B A   E  A A B