collisionneur circulaire Etude sur un futur collisionneur circulaire Réunion de la Structure permanente de concertation- CERN – DFAE – République et Canton de Genève - FIPOI CERN, le 26 septembre 2017
Mandat : Stratégie Européenne pour la Physique des Particules “Le CERN devrait entreprendre des études de conception pour des accélérateurs dans un contexte mondial, en mettant l’accent sur des machines proton-proton et électron-positron à la frontière des hautes énergies.” Première mise à jour de la Stratégie Européenne de la Physique des Particules, Mai 2013 02/2014 11/2018 05/2020 FCC Study 2nd Strategy Update CERN, 26 septembre 2017 Michael Benedikt (CERN)
Michael Benedikt (CERN) Portée de l’Etude pp collisionneur (FCC-hh) Définit les paramètres de l’infrastructure Aimants 16 Tesla → 100 TeV énergie de collision 100 km de circonférence e+e- collisionneur (FCC-ee) Étape intermédiaire possible Luminosités extrêmes de 90–350 GeV High-energy LHC (HE-LHC) basé sur les technologies du FCC-hh Valorisation du système d’accélerateurs existants du CERN, du savoir-faire et du modèle de réussite de gestion d’un grand projet scientifique international . Capital de confiance entre des partenaires internationaux aux cultures et systèmes politiques différents. The FCC study focuses on a hadron machine, which can collide protons and ions as well as on a lepton machine, collider electrons and protons. The impact on the hadron collider if hadron and electrons from a separate electron accelerator should be collider are studied together with integration impacts, cost and benefit evaluation. Although machine and technology studies are site independent, the need to quantify infrastructure needs both in terms of technology, performance and cost call for embedding the collider in some environment – the existing CERN accelerator complex provides the frame for this part of the study. CERN, 26 septembre 2017 Michael Benedikt (CERN)
Michael Benedikt (CERN) Contenu de l’Etude The conceptual design report encompasses collider design options, studies of the required infrastructures, an identification of R&D needs together with prioritization, the elaboration of physics cases and how they are covered by different collider options, sketches of particle physics experiments that can take place at the colliders and finally cost estimates of R&D, construction and transition phases encompassing all studied topics. CERN, 26 septembre 2017 Michael Benedikt (CERN)
Michael Benedikt (CERN) Collisionneurs Circulaires du CERN Temps de conception et de construction 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 25 ans Construction Physics Upgr LEP Construction Physics Proto Design LHC (tunnel existant) Construct Physics Design HL-LHC Looking at the realisation phases of previous large scale circular colliders at CERN, it becomes evident that a time window of 20 years is just sufficient enough from design to construction to ensure a smooth transition from operation of the upgraded high-luminosity LHC to a nect generation collider. Physics Construction Proto Design Future Collider Rapport de conception 2018 CERN, 26 septembre 2017 Michael Benedikt (CERN)
Michael Benedikt (CERN) Etudes de génie civil Evaluer la faisabilité et le coût Développer des concepts de construction (technique, organisation, financement) Développer des concepts de sécurité Développer des concepts d’intervention pour les Etats-hôtes et de participation pour leur population CERN, 26 septembre 2017 Michael Benedikt (CERN)
Michael Benedikt (CERN) Etudes relatives au site d’implantation Evaluer la faisabilité et le coût Développer des concepts de construction (technique, organisation, financement) Développer des concepts de sécurité Développer des concepts d’intervention pour les Etats-hôtes et de participation pour leur population Un tunnel de ~100 km s’inscrit bien dans la géologie du bassin genevois. Le LHC serait adapté comme injecteur pour le FCC. Une version de 97.75 km qui se combine avec le LHC est désormais en cours d’étude approfondie. CERN, 26 septembre 2017 Michael Benedikt (CERN)
16 T 4.0 Sauts technologiques Nb3Sn MgB2 Aimants à haut champ Nouveaux matériaux Nb3Sn MgB2 Cryogénie efficace Efficacité énergétique Fiabilité et disponibilité Systèmes intégrés de production industrielle 4.0 In order to meet the performance goals and to achieve a good value versus cost ratio for constructing and operating a scaled up frontier collider, a set of key technologies needs to be pushed far beyond the current state-of-the art: A design and construction concept for a high-quality, high-field superconducting accelerator magnet to be produced in large quantity needs to be developed. Novel materials and novel processing techniques for those materials need to be identified for numerous key elements, ranging from magnets over radiofrequency systems to beam screen and beam pipe, collimators, dumps and many more. Power efficient and highly-reliable cryogenics systems for large-scale deployment need to be developed together with industry partners Blunt scaling of existing machines impose a limit on the operability. Therefore ways to improve energy efficiency for accelerator elements and for technical infrastructure services are considered key enablers Availability depends strongly on external factors such as injecting accelerators, infrastructure services, reduced and co-scheduled maintenance and repair actions. Therefore an overall approach to study the cost and benefits of individual and of combined availability increasing approaches become critical already at the very beginning. The assessment of methods to study availability for a future large-scale collider are already considered a valuable initiative, which may turn into CERN and the LHC have pioneered world-wide data grid services for scientific computing and data analysis. With ever increasing operation expenditures and dependence on network infrastructures the time has come to pave the way for cost and performance efficient next generation computing infrastructures which can be dynamically fit to every changing needs. FCC provides a fruitful ground to create a multi-disciplinary interest group to work on a uniform architecture, an adaptable performance frame and a shared usage and financing model federating all science communities, which rely on distributed computing and data infrastructures. CERN, 26 septembre 2017 Michael Benedikt (CERN)
Michael Benedikt (CERN) Memorandum Of Understanding Coopération des partenaires du monde entier pour développer des concepts techniques Le Memorandum of Understanding (MoU) définit le mode de partenariat Le partenariat est ouvert et s’élargit en continu Le CERN est responsable de la coordination d’ensemble CERN, 26 septembre 2017 Michael Benedikt (CERN)
Michael Benedikt (CERN) Etat du partenariat FCC EC H2020 116 Instituts 25 Entreprises 33 Pays CERN, 26 septembre 2017 Michael Benedikt (CERN)
Michael Benedikt (CERN) Communauté mondiale en croissance Geneva Switzerland Washington U.S.A. Rome Italy Berlin Germany Participants internationaux aux congrès annuels du FCC CERN, 26 septembre 2017 Michael Benedikt (CERN)
Echéancier des scénarios Mise à jour de la Stratégie européenne – 2026 – possible décision pour un projet de construction 20 22 24 26 28 30 32 34 36 38 40 42 Technical Design Phase Dipole short models Dipole long models SC Magnets 16 T dipole indust. prototypes 16 T dipoles preseries 16 T series production Civil Engineering FCC-hh ring FCC-hh CE TL to LHC LHC Modification Installation + test FCC-hh Key availability impacting parameters are safety, performance and efficiency. 100 year of large scale engineering projects have demonstrated that these three aspects must be addressed as early as possible to make a success happen. Hence, these aspects are from the beginning onwards embedded into the FCC study program. CE FCC-ee ring + injector FCC-ee Injector Installation + test FCC-ee LHC Removal HE-LHC Installation HE-LHC CERN, 26 septembre 2017 Michael Benedikt (CERN)