Proposée par : (hors étudiants):

Slides:



Advertisements
Présentations similaires
1. Introduction: 2. Detecteurs a pied de gerbe (preshower) 3. Le systeme de declenchement EM 4. Application au Run II 1. Introduction: Motivations & upgrade.
Advertisements

Z SILICON DRIFT DETECTOR IN ALICE When a particle crosses the thickness of SDD electrons are released. They drift under the effect of an applied electric.
Recherche de la production électrofaible du quark top à DØ Emmanuel Busato, LPNHE Paris Journées Jeunes Chercheurs 2003  Reconstruction des jets dans.
1 Petite introduction à l’exercice LEP ( ): collisions e + -e - LHC (2009-): collisions p-p.
Correction de l'énergie des jets et Recherche de la Supersymétrie dans l'expérience D0 Plan de la présentation ● Description de l’appareillage ● Reconstruction.
Jet/Met Feb G. Bernardi LPNHE - Paris News and Views - Update de la Run Sel. - Plans pour l’analyse - Status du budget - AOB (conf., ecoles etc..)
SFP – 10 juillet La Physique au Tevatron Sophie Trincaz-Duvoid  Le Tevatron et les détecteurs D0 et CDF  Thèmes de recherche au Tevatron  Physique.
CALORIMETRE ELECTROMAGNETIQUE
Stephanie Beauceron These soutenue le 28 Mai 2004 realisee sous la direction de Gregorio Bernardi au sein du groupe DØ du LPNHE sur le sujet.
U. Bassler, LPNHE-Paris L’expérience DØ au Tevatron Le Tevatron Le détecteur DØ Physique du Top Recherche du Higgs Susy.
Julien MOREL - GRD SUSY - Lyon 12/07/06 1 Recherche de Z’  e + e - avec ATLAS auprès du LHC Fabienne LEDROIT Julien MOREL LPSC - Grenoble.
JJC 2002 Stéphanie Beauceron LPNHE- Paris 1 L’expérience DØ I. Fermilab et le Tevatron II. Le détecteur 1- Les principaux sous détecteurs 2- La calibration.
1 Status de l’étude de mesure d’impulsion par MCS Application aux ‘softs’ muons D. Duchesneau Situation actuelle: algorithme de base et vérification avec.
1 Activité faisceau longue distance: développement prototype de détecteur 5 juillet 2013 programme de R&D sur la technologie LAr pour détecteur lointain.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
Réunion OPERA 06/04/2010 Florian Brunet. Rappel : Electron WG meeting du 30/03/2010 ◦ Complément sur OpEmuIO Etudes de digits du MC à grands angles A.
SKIROC status LAL – EUDET France – 05/04/2007. Common DAQ Slice FE FPGA PHY VFE ASIC Dat a Clock+Config+Control VFE ASIC VFE ASIC VFE ASIC Conf/ Clock.
B Mansoulié (DAPNIA-SPP) Journée aimants-supra 1 Futurs aimants supra en physique des particules - Accélérateurs - LHC : augmentation luminosité - Super-PS,
Etude du quark top au LHC dans l’expérience ATLAS Bernardo Resende sous la direction d’Emmanuel Monnier 18 avril 2005 Le LHC et ATLAS Physique du quark.
Making PowerPoint Slides Avoiding the Pitfalls of Bad Slides.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
SKIROC status LAL – EUDET France – 05/04/2007. Common DAQ Slice FE FPGA PHY VFE ASIC Dat a Clock+Config+Control VFE ASIC VFE ASIC VFE ASIC Conf/ Clock.
Méchanic at the CPPM – 10/01/06 Françoise RIVIERE – Jean-Luc GIMENEZ – Daniel Labat Pierre KARST IR Detector - Test cryostat : Machining and polishing.
Collisions, Détection, Interprétation International MasterClasses /03/12 - CERN.
Electronic Instrumentation Lecturer Touseef Yaqoob1 Sensors and Instrumentation Sensors and Instrumentation.
 Components have ratings  Ratings can be Voltage, Current or Power (Volts, Amps or Watts  If a Current of Power rating is exceeded the component overheats.
IP Multicast Text available on
Architecture de Réseaux Travaux Pratiques
Etat, perspectives et proposition de continuation de D0-France
L’accélérateur LHC et ses détecteurs
Collisions, Détection, Interprétation
Recherche de particules supersymétriques en R-parité violée, avec le couplage λ121 Les résultats actuels Limites attendues D0RunII et limites LEP/Hera/CDF/CMS.
Statut du détecteur et des projets PP LAL Orsay DØ France 8-9/11/04
Photons Episode 3.
Physical principle Ultrapurification Single pixel detector Electronics
Le calorimètre électromagnétique de l’expérience PANDA
Journée ATLAS / MAROC 24 Avril 2017
Architecture de Réseaux Travaux Pratiques
Proposée par : (hors étudiants):
Réunion service Instrumentation Activités CMS-Traces
Architecture de Réseaux Travaux Pratiques
D0-France a Grenoble G. Bernardi Merci au LPSC
Quelle efficacité de trace-base (micro) mettre dans le MC OPERA?
Équipe actuelle (bâtiment 24):
Strengths and weaknesses of digital filtering Example of ATLAS LAr calorimeter C. de La Taille 11 dec 2009.
Identification des électrons provenant de la désintégration
En particulier: Travail sur resolution en énergie des jets
Expérience DØ au LPNHE Composition du groupe:
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
Introduction à l'expérience BaBar
ΔVCS et Distributions de Partons Généralisées
Recherche de résonance top antitop dans les collisions p-p à ATLAS
MATCHSLIDE : INT contribution Patrick HORAIN Hichem ATTI Waheb LARBI Presented as : "TELESLIDE: Technical aspects ", Jacques Klossa & Patrick Horain, Joint.
Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics.
QCD physics with antiprotons
Scenario d’intégration du pixel alpin
R des 2 jets et HT des evenements
Phase-Locked Loop Design S emiconducto r S imulation L aboratory Phase-locked loops: Building blocks in receivers and other communication electronics Main.
P&ID SYMBOLS. P&IDs Piping and Instrumentation Diagrams or simply P&IDs are the “schematics” used in the field of instrumentation and control (Automation)
Essai
High-Availability Linux Services And Newtork Administration Bourbita Mahdi 2016.
Présentation pour M. R. Aymar 19 IX 2004
Definition Division of labour (or specialisation) takes place when a worker specialises in producing a good or a part of a good.
Standards Certification Education & Training Publishing Conferences & Exhibits Automation Connections ISA EXPO 2006 Wed, 1:00 Oct 18.
By:- Israr K. Raja Islamabad, Pakistan. Supply Chain Activities those Affect the Financial Performance Supply chain managers make decisions and use organizational.
beam charge measurements
Making PowerPoint Slides Avoiding the Pitfalls of Bad Slides.
University : Ammar Telidji Laghouat Faculty : Technology Department : Electronics 3rd year Telecommunications Professor : S.Benghouini Student: Tadj Souad.
COMPENSATION PLAN. THE ENHANCED QNET COMPENSATION PLAN Simpler. Better. We have grown and transformed based on the ever-evolving business needs of our.
M’SILA University Information Communication Sciences and technology
Transcription de la présentation:

Amélioration du système de sélection en ligne des événements par le calorimètre de l'expérience DØ Proposée par : (hors étudiants): M. Besançon, J. Bystricky, L. Chevalier, P. Colas, C. Guyot, P. Le Dû, P. Lutz, E. Perez, J.F. Renardy, C. Royon, B. Tuchming, A. Zylberstejn Consultations pour définition du projet: D. Calvet, I. Mandjavidze, M.Mur, B. Thooris CSTS- SPP 19 Juin 2001

Le groupe DÆ à Saclay Mailing list actuelle: Présentation CSTS 1997: B. Bloch, P. Bonamy, J. Bystricky, L.Chevalier, C.Guyot, J.-F Laporte, P. Le Dû, P. Micout, A. Pluquet, M. Virchaux, A.Zylberstejn     Mailing list actuelle: M. Besançon, P. Bonamy, J. Bystricky, L.Chevalier, P.Colas, F. Deliot, C.Guyot, A. Kouchner, P. Le Dû, P. Lutz, P. Micout, E Perez, J.F. Renardy, Ch. Royon,, B. Thooris, B. Tuchming, A.Zylberstejn   Principaux intérêts de physique: Susy avec violation de la parité R Top Higgs Masse du W ……

Le groupe DÆ à Saclay Responsabilités Réalisations techniques Budget    Principales contributions aux codes: Reconstruction et identification des muons (forte participation aux codes) Reconstruction des traces chargées Reconstruction et identification des électrons Simulation du déclenchement niveau 1 par le détecteur de traces a fibres optiques Responsabilités Coordination de la physique electro-weak Coordination du groupe reconstruction des muons Réalisations techniques Éléments de l’électronique de déclenchement de niveau 2: Fiber Interface Converter (FIC) (coût : ~ 600 KF en 2 ans) Budget Fonctionnement et running costs: 500kF/an Missions: 650 KF dont une longue durée

Located just west of Chicago The Tevatron Main injector (run II) antiprotons CDF protons 1 km DÆ Located just west of Chicago Center of mass energy: Run I (1992-1996): 1.8 TeV Run II (2001-2007): 2.0 TeV

La Collaboration DØ Dernier comptage 573 personnes, 71 institutions, 17 pays

Le Détecteur DØ (Run I: 1992-1996) No mag. field in central region Central Calorimeter End Calorimeter TRD Uranium liquid argon Calorimeter Central Drift Chambers (Tracking)

( pour obtenir:ò L dt » 2 à 4 fb-1/expérience ) Tevatron entre 1996 et 2001 ( pour obtenir:ò L dt » 2 à 4 fb-1/expérience ) Changement dans les accélérateurs : “Main Injector” remplace le Main Ring (La machine originale de NAL) Système de refroidissement stochastique complètement modifié “Recycler ring”, anneau de stockage à aimants permanents Énergie collisions à 2 x 980 GeV Nombre de paquets de p et p̅ de 6 à 36, temps entre 2 croisements 3.4 ms  396 ns Upgrades de D0 & CDF

Le Détecteur DØ (Run II) Chambres a dérive avant pour la détection des muons Scintillateurs centraux Scintillateurs avants Aimant toroïdal Blindage Aimant solénoïdal, détecteur de traces central (silicium et fibres optiques) Le Détecteur DØ (Run II)

Détecteur de traces central(phase II) Détecteur au silicium 4 couches cylindriques (à double/simple face) Disques en silicium intercalés (à double face) 793,000 canaux Détecteur à fibres optiques 8 doubles couches (z-u-v) 74,000 fibres de 830 mm 1.1 Aimant solénoïdal 2T cryostat 1.7 Détecteur de pied de gerbes Sandwich plomb-scintillateur 16,000 canaux Avant 6,000 canaux Central

Evolution du Tevatron 0.16x1032 0.86x1032 2.10x1032 5.2x1032 Run I (1992-96 Run IIa 2001-2004 Run II b Nb. de paquets 6x6 36x36 140x105 Nb protons/paquet 2.3x1011 2.7x1011 Total p̅ 3.3x1011 1.1x1012 4.2x1012 1.1x1013 Taux de production des p̅ 6.0x1010 1.0x1011 2.1x1011 5.2x1011 heure-1 Énergie 2x900 2x980 2x1000(?) Gev Angle de croisement 0.0 136 mrad Temps entre 2 croisements 3500 396 132 ns Luminosité 0.16x1032 0.86x1032 2.10x1032 5.2x1032 cm-2 s-1 Interactions par croisement 2.5 2.3 1.9 4.8

Luminosity History Run IIb Run IIa 140 Initial Run IIa Current Run II peak

Run II Luminosity Goals Run IIa - initial phase Peak luminosity up to 2x1032 /cm2/sec Run IIa – 2nd phase Switch to 140x105 bunches at 1x1032 /cm2/sec The luminosity goal for Run IIa+Run IIb is 15 fb-1 Increase antiproton intensity by 2-3 Peak luminosity up to 5x1032 /cm2/sec-1

Run IIa Plan Increase number of p and p̄ in Tevatron Proton intensity/bunch: ~1.2x Pbar intensity/bunch: ~0.5x Number of bunches: 6x6 Increase p̄ production rate by factor of 3 over Run I Decrease cycle time for protons on target ~1.6x Increase acceptance: pbars/proton ~1.3x Increase protons on target: ~1.5x Progressive increase of luminosity Switch to 132 nsec operation at 1x1032/cm-2/sec when <nb. of events/crossing> ~ 5

Path to Run IIb Increase the number of p̄ in the collider by a factor of 2-3 over Run IIa More protons on the p̄ target Slip stacking (~1.8 x) Better p̄ collection efficiency Lithium lens Upgrade(~1.3 - 1.5 x) AP2-Debuncher aperture increases (~1.5 x) Handle the Increased p̄ Flux Debuncher cooling bandwidth increase Accumulator Stacktail Electron cooling in the Recycler Better p̄ transfer efficiency

Run II luminosity Typical luminosity ~ 1/3 peak luminosity Initial Store Luminosity Integrated Luminosity 60 16 50 14 12 40 10 (1e+31 / cm-2 sec-1) Year 30 inverse femto-barns 8 Total 20 6 4 10 2 FY01 FY02 FY03 FY04 FY05 FY06 FY07 FY01 FY02 FY03 FY04 FY05 FY06 FY07 Typical luminosity ~ 1/3 peak luminosity 1 fb-1 ~ 1 year at 1032/cm2/sec

Tevatron current status End of March: a few runs with 36x36 bunches mode of operation 6 weeks shut down for machine repairs and detectors installation June 10th: Resume operation with 36x36 Luminosity: ~ 10 30

DØ at start of collisions Upgraded all electronics, added new detector systems, shielding, etc… Mechanically “complete” detector rolled in 01/26/01 Detector cabling continued in collision hall – completed during May shutdown First collisions with complete, closed detector and with solenoid (2T) toroids (1.7T) June 7

DØ Current Status Sub-system Installed Instrumented Operational SMT 100% 90% CFT/CPS 6% FPS 0% Calorimeter 98% CAL-Trigger 80% 33% ICD 99% 60% Muon PDTs TBD% Muon MDTs Muon Trigger Counters L1 Muon 45% 45%?

Silicon: Tracking Results Offline tracking 4 hit tracking No B-field, alignment, multiple scattering, etc. included Results match those from L3 From the official, standard versions of offline reconstruction and L3 code x x 3D Event Displays

First DØ Global Track in SMT + CFT Axial Stereo Relative alignment of silicon and fiber trackers verified to 40 m level 3D Track with 5 fiber tracker hits, 5 3D silicon hits

DØ Vertex Distributions Analysis of one of the first 36x36 runs Primary vertices reconstructed from tracks in silicon: Xvtx=+0.274 cm Yvtx=+0.315 cm Zvtx=+7.036 cm

Calorimeter Energy   EM Energy in Calorimeter Towers Hadronic Energy in Calorimeter Towers “Multi-something” event? r- view r-z view “LEGO” plot +z   +z

Conclusions Run 2a well underway Colliding beam delivered every day since June 7 Many systems to complete commissioning and calibrate in the next few months Will complete final installation of all pieces with some access by Fall (Aug/Sep) We expect to have a fully physics capable detector with stable running conditions before the end of 2001 Look for physics results about this time next year, based on integrated luminosity possibly exceeding that of all of Run 1!

Luminosité accumulée durant la phase II La phase II permettra d’accumuler une luminosité 20 fois supérieure à celle accumulée lors de la phase I et la phase IIb devrait apporter un facteur 5 à 10 supplémentaire fb-1 Région intéressante pour la recherche du Higgs  Luminositée instantanée (10 32 cm-2 s-1 )  Luminositée intégrée (fb-1) x 10 32 cm-2 s-1

Diapos de réserve

Run IIa plan Integrate Recycler into operation ‘Recycle’ pbars from Tevatron at end of store Essential for high luminosity operation Switch to 132 nsec operation at 1x1032/cm-2/sec When <nb. of events/crossing> ~ 5 NB: Typical luminosity ~ 1/3 peak luminosity 1 fb-1 = 1032/cm2/sec x 107 sec

Découverte du quark top Le Tevatron Phase I (1992-1996 ) Ös = 1.8 TeV L max = 1.6 ´ 1031 cm-2 s-1 ò L dt » .12 fb-1 Phase II a (à partir de Mars 2001  2004) Ös = 1.96 TeV Þ 30% sur s top, recherches... L max = 2 ´ 1032 cm-2 s-1 ò L dt » 2 à 4 fb-1 /expérience Phase II b (2004  LHC à pleine puissance) L constant = 5 ´ 1032 cm-2 s-1 ò L dt » 15 fb-1 /expérience Découverte du quark top Nouvelles particules ? Higgs ?

How to increase the number of p̅ Make more: Increase proton flux on antiproton target Collect more: Improve collection lens performance Improve beamline apertures Handle more: Upgrade stochastic cooling systems Improve beam transfer efficiencies Utilize new storage ring: Recycler

Making more pbars Increase number of protons in Main Injector: ~1.8x more pbars Slip Stacking MI RF beam loading compensation To keep RF voltage under control Beam sweeping at target To keep target from melting Booster beam cogging For alignment of 2 batches in the MI Brighter proton source Brighter ion source in linac New linac front-end acceleration stage

Collect more pbars Lithium lens: high current, radial field Collection efficiency depends upon lens gradient Upgrade goal: ~1.5x more pbars TEV 1 design gradient was 1000 T / m Catastrophic failures due to component fatigue limits the present gradient to 760 T / m Upgrade present lens design to obtain 1000 T / m New fabrication techniques New materials Package re-design (better cooling, etc.) Lens parameter changes (radius, etc.)

Collect more pbars Increase aperture in regions upstream of the first stage of stochastic cooling: ~1.5x more pbars AP2 transfer line Debuncher The goal is to increase the aperture in both planes from 25p mm-mrad to 40 p mm-mrad Beam based alignment of all magnetic elements requires new instrumentation CDF R. Hughes, B. Winer, A.Semenov motorized quads Physical aperture increases such as replacing beam pipe in Debuncher dipoles with curved beam pipe

Handle more pbars 1.8 x 1.5 x 1.5 = 4x more pbars! (if they all work) Stochastic cooling performance: Debuncher: Run IIa upgrade looked ahead to Run Iib, modifications to hardware design Accumulator: Modifications to stacktail and core cooling Recycler cooling performance” Recycler Electron cooling Transfer performance: Transfer time ~10 minutes Transfer efficiency from Accumulator to Recycler

Handle more pbars Electron cooling in Recycler: Stochastic cooling will have problems with high densities Pbars heavier than electrons, transfer energy from heavier to lighter objects Cool and recycle high intensity pbar beams necessary for high luminosity R&D effort in progress to understand technology required for cooling 8 GeV pbars: 4.3 MeV high current electron source

Run II Parameters

Le détecteur est installé! Jan 16, 2001 Zone d’interactions Jan 25, 2001 En mouvement !!! Jan 26, 2001 En place

The Run 2 DØ Detector Muon central and forward trigger scintillator New! New! New! New! New! New! New! New! New! Starting from central out New silicon microstrip tracker (SMT) New central fiber tracker (CFT) Solenoid Central and Forward Preshowers New Intercryostat detectors (ICD) New muon central and forward trigger scintillator New muon forward mini-drift tubes New Front-end readout electronics, Trigger, DAQ Silicon Microstrip Tracker (SMT) Central Fiber Tracker (CFT) Superconducting Solenoid Central(CPS)/Forward Preshowers (FPS) Inter-Cryostat Detectors (ICD) Muon central and forward trigger scintillator Muon forward mini-drift tubes (MDT) Forward Proton Detector (FPD) Shielding Front-end readout electronics, Trigger, DAQ Whole bunch more TLA’s (Three Letter Acronyms)

Silicon Microstrip Tracker H disk barrel F disk 6 Barrels 8 layers, 432 ladders 16 Disks 12 central, 144 wedges 4 forward, 96 wedges 3m2 silicon, 800k channels 6 detector types 3,6,8,9 chip readout (SVX2) Double- and Single-sided 100% of detectors are instrumented, 90% operational 6% of devices not under power

Event with 6 tracks pointing to same vertex 36  36 Store Run 119679, Event 231653 Level 3 (software trigger) Silicon-only Tracking

Central & Forward Preshowers Central Fiber Tracker Central & Forward Preshowers Fiber Tracker and Central Preshower All detectors + waveguides installed, commissioned with prototype boards  0.2% compromised channels Electronics chain is complete except for Analog Front End readout boards Performance problems delayed board production and delivery 10 in hand, balance for Fiber Tracker and Central Preshower due ~1-2 weeks (partial delivery today) Slight modifications and testing Install in next 1-2 months Minimal L1 occupancy trigger (2/8 layers) in one phi sector capability at moment Complete trigger components ~ 1-2 months Forward Preshower

Fiber Tracker: Offline Tracking 5 hit tracks 2 1/pT + + + + + Since B=0 for this run, real tracks should be found with 1/pT = 0

Fiber Tracker and Preshower Readout Photopeak Spectrum 1 x 8 commissioning Detectors timed in Occupancy measurements MC 6%  can handle 4-5 MinBias events Measure ~3%  could handle 8-9 MinBias events 1 2 3 4 ADC Counts Central Preshower MIP Peak Using prototype Front End boards 4000 channels timed in 5% Fiber Tracker (5 axial, 1 stereo) 3% Central Preshower (1 axial)

Calorimeter/ICD 98% Electronics installed; commissioned; <0.5% bad channels ICD tiles/waveguides installed; 60% instrumented and commissioned Timed in to 100 ns L1 Central trigger installed and functioning to, readout+L2 ~ 1 month Endcap trigger ~ 1 month

Muon System Central PDT Forward MDT Central scintillator Forward Mini-Drift Tubes Forward pixel scintillator Central scintillator Central Proportional Drfit Tubes Central PDT 94 drift chambers Fully installed Readout ~ 50% Timing adjusted to 100 ns Forward MDT 50,000 wires Fully operational Timed in to 50 ns Central scintillator 990 counters Forward pixel scintillator 4608 counters Fully operational Timed in < 10-20 ns Scintillator + PDT centroid triggering and tracking to L1/L2 45% installed, rest ~1-2 months

Forward Proton Detector Bellows Q4 D S Q3 A1 A2 P1UP p Z(m) D1 Detector Roman Pot 23 33 59 57 Q2 P1DN 18 Roman pots 9 independent momentum spectrometers (1 dipole, 8 quadrupole) All castles installed + cabled + electronics 1 spectrometer fully instrumented, being commissioned Remaining eight installed in Fall

Sections efficaces de production au Tevatron

La phase II : 20 fois plus de luminosité intégrée W/Z bosons: 1.5´106 W®en, 1.5´105 Z®ee; d(MW )  30 MeV; Couplages WWg,WWZ,ZZg et ZZg ~10%; asymétries avant-arrière des W/Z Au-delà du Modèle Standard: SUSY, leptoquarks, Production de Higgs léger (WH, H®bb) ( haute lumi. nécessaire !!), caractère composite des particules, QCD: > 5000 événements avec jet ET > 300 GeV et ET(jets) ~500 GeV; production de multi_jets, W/Z,g, b-quarks,.. Physique du quark b: 10,000 B0 ® J/yKs reconstruits; mélange Bs (xs»20); mésons lourds contenant un quark b-quark (Bc,Bs,Lb), Violation de CP en di-leptons et Bd®J/yKs ((sin 2b) »0.05), Désintégrations rares des B ( Bd®mm, Bd®Kmm,...) Nouveau pour D0 Quark top: 1000 paires t-tbar signées par un quark b; d(mtop)  3GeV; production de top unique: largeur, dVtb»0.1; désintégrations rares du top {B(t®cg)< 210-3 , B(t®cZ) < 10-2, B(t®H+b)<15%

Search for Susy particles Squark/gluino: Excluded regions ~ M(q )> 250 GeV @ 95% C.L. M(g ) > 260 GeV ~

Physique au Tevatron QCD Physique du modèle standard Structure des nucléons (parton distributions, diffraction) Jets, photons, Drell-Yan, bosons vecteurs +jets, production de saveurs lourdes Physique du modèle standard Quark top: production, masse , désintégrations rares, production de top unique W/Z: mesure précise de la masse de la largeur; couplages tri-bosons Au delà du modèle standard … Boson de Higgs (Run II b) Technicolor, compositeness, nouveaux bosons vecteurs, etc. Physique du quark b Production et caractéristiques (Run II) des quarks b (dont violation CP dans B  KS, )

Le quark top au Tevatron

Mw: toutes les mesures MW = 80.436±0.037 GeV/c2

M(W) vs M(top) Dans le modèle standard MW et Mtop donnent des informations indirectes sur MHiggs En combinant les résultats de LEP II, CDF et DØ on pourrait avoir à la fin de la phase IIa: Attendu après la phase IIa (moyenne mondiale) Input : Mw= 80.436  0.037 GeV/c2 Mtop=174.3  5.1 GeV/c2

Expérience DÆ Bilan Phase I: 116 pb-1 s=1800 GeV+ 0.46 pb-1 630 GeV L’histoire du Tevatron Phase “0” = 1988-89, òLdt ~ 4 pb-1 (CDF) Phase “1A” = 1992-93 òLdt ~ 120 pb-1 Phase “2A” = 2001-04, òLdt ~2000 pb-1 Phase “2B” = 2004-07, òLdt ~15000 pb-1 Bilan Phase I: 116 pb-1 s=1800 GeV+ 0.46 pb-1 630 GeV 100++ articles publies, 100++ thèses ~ 68 000 000 événements enregistres 600 événements t t̅̅̅ produits, qcq. dizaines observés

DØ Detector

Le détecteur D0 au Run II

Uranium liquid argon Calorimeter DØ Run I Central Calorimeter End Calorimeter Hadronic Calorimeter Central Drift Chamber (Tracking) Uranium liquid argon Calorimeter TRD No mag. Field in central region

CDF-II Experiment Detectors retained from CDF Run I New in Run II Central, wall calorimeters Central, extension muon detectors New in Run II Tracking Systems Silicon tracking system Central Outer Tracker End plug calorimeter Cerenkov Luminosity Monitor Forward muon detectors Scintillator time of flight Front-end electronics (132 ns) Pipelined trigger, DAQ All new software MUON CHAMBERS(CMP) CMX MUON CHAMBERS(CMU) COT .5 1.0 1.5 2.0 2.5 3.0 END WALL HADRON CAL. Inner silicon 6 layers 3 30 SOLENOID Intermediate silicon 1 or 2 layers = 1.0 = 2.0 n END PLUG EM CALORIMETER END PLUG HADRON CALORIMETER = 3.0 m HAD CALORIMETER TOF EM CALORIMETER

CDF-II Detector Solenoid retained from Run I New drift chamber(COT) 96 layers 3d silicon tracking 7 layers in central region 8 layers in forward Scintillating tile plug calorimeter covers to |h|=3.6 MUON CHAMBERS(CMP) CMX COT .5 1.0 1.5 2.0 2.5 3.0 END WALL HADRON CAL. Inner silicon 6 layers 3 30 SOLENOID Intermediate silicon 1 or 2 layers = 1.0 = 2.0 n END PLUG EM CALORIMETER END PLUG HADRON CALORIMETER = 3.0 m EM CALORIMETER HAD CALORIMETER TOF MUON CHAMBERS(CMU)

Silicon Detector (Side View)

CDF Detector Roll-In

Calorimeter, Shower Max Extension, Forward Muon CDF-II Status (June 1) Sub-system Instrumented Operational Luminosity Monitor 100% 100% Silicon : L00,SVX ISL 100% 95% 67% COT 100% 100% Calorimeter, Shower Max 100% 100% Central Muon 100% 100% Extension, Forward Muon 90%, 50% 90%, 50% Time-of-Flight 8% 8% Level-1 100% 100% Level-2 80% commissioning Level-3 100% developing filters Data Logging 100% full rate (20 Mb / sec) Offline being tuned with data