CHAPITRE II Caractéristiques géométriques des sections planes

Slides:



Advertisements
Présentations similaires
Résistance des Matériaux
Advertisements

CHAPITRE II Caractéristiques géométriques des sections planes
I. Définition II. Énergie de déformation III. Théorèmes énergétiques.
Cours de Dynamique Partie 1 suite Géométrie des masses.
Éléments cinétiques des système matériels
Le tableau suivant donne la définition actuelle de ces 7 unités de base. 02/12/20141cour de metrologie.
Programmation Cm2Mathématiques CALCUL MENTALNOMBRESCALCULGEOMETRIE GRANDEURS ET MESURES ORGANISATION ET GESTION DE DONNEES PERIODE 1  Connaître.
Réalisé par R. MARRAKHA. KHAYAR Khayar-marrakh Université Hassan-II Faculté des sciences Aïn chock Casablanca Professeurs assistants - département de physique.
Les objectifs de connaissance : Les objectifs de savoir-faire : - La lumière présente des aspects ondulatoire et particulaire ; - On peut associer une.
Cours PRODUIT SCALAIRE ET CALCUL D’ANGLES Dimitri Zuchowski et Marc-Élie Lapointe.
COURS DE THERMODYNAMIQUE (Module En 21) 26/11/20161Cours de thermodynamique M.Bouguechal En 21.
Etude d’une poutre sur 2 appuis simples chargée uniformémént Détermination : -des diagrammes des moments fléchissants et de l’effort tranchant - de la.
1 Les engrenages cylindriques droits Conception des machines Cours 7.
V Suite géométrique : 1°) Définition : un+1
dans le triangle rectangle
Faculté des sciences Aïn chock Systèmes de coordonnées
Pierre Joli Cours de Mathématique Pierre Joli
Chapître 1 Objectifs de la résistance des matériaux (RDM)
Exercices de synthèse Mathématique Secondaire 4 Partie 2
La mécanique du solide L’équilibre statique.
Thème 2 : Lois et modèles.
CHAPITRE VIII Flexion pure
Exercice 1 Soient le point A( 2 ; 5 ) et la droite d d’équation y = 3x – 1 dans un repère orthonormé. Déterminez l’équation de la droite d’, perpendiculaire.
Résistance des Matériaux
Notions simples de résistance des matériaux par l’exemple
Etude d’une poutre sur 2 appuis simples chargée uniformémént
Fonctions affines.
PREMIERE PARTIE: De la gravitation à l’énergie mécanique
CHAPITRE VII Torsion pure
CINEMATIQUE DES SOLIDES Chap 3: Mouvement plan. Un solide est en mouvement plan lorsque tous les points de celui-ci se déplacent dans des plans parallèles.
Statique 1 STM Conception Mécanique La mécanique branche de la physique qui étudie le mouvement des corps et les forces auxquelles ils sont soumis. La.
Chapitre 9 : Les fonctions (2)
A H C « projeté orthogonal de B sur (AC) ».
Les angles.
2.2 PRODUIT SCALAIRE ET CALCUL D’ANGLES
Tolérances géométriques : Exercices GRETA de Reims 1 Élément(s) tolérancé(s) : Élément(s) de référence : Référence(s) spécifiée(s) : Zone(s) de tolérance.
CAUSE Plan de chargement Section rabattue EFFET Plan de flexion w
Miroirs Rédacteur : J.Mourlhou Lycée Toulouse-Lautrec Toulouse.
BONNE SOIREE année HARIRI Saïd PANIER Stéphane DEMOUVEAU
CHAPITRE IV Caractéristiques mécaniques des matériaux Hautes Etudes d’Ingénieur 13, rue de Toul Lille Cedex Résistance des Matériaux Cours de Tronc.
Chapitre 4 : Transformations
Système de coordonnées
Système de coordonnées
Système de coordonnées
Angles. I/ Vocabulaire et définitions 1°) Mises au point.
Cours de physique générale I Ph 11
CINEMATIQUE DU POINT OBJECTIFS :
Cours de physique générale II Ph 12
Energétique Cours de mécanique TGMB1.
CARACTERISTIQUES D’INERTIE DES SOLIDES
Chapitre 2 - INTERACTIONS ET FORCES
Les nombres complexes Saison 1 - Épisode 2. Les nombres complexes Saison 1 - Épisode 2.
Produit vectoriel Montage préparé par : André Ross
Plan cartésien (4 quadrants) Transformations (réflexion / translation)
Lionel GRILLETLycée B FRANKLIN DynamiqueDynamique Terminale Si.
Symétrie centrale I) Rappel sur la symétrie axiale (6ème)
Cinématique : concepts de base
Sera vu dans le prochain cours.
Projection, cosinus et trigonométrie.
Chapitre 15 : Symétrie axiale
1/16 CINEMATIQUE 1) Cinématique du point 2) Dérivation vectorielle.
Chapitre10 : Symétrie axiale
On a une infinité d’angles remarquables !
GEOMETRIE VECTORIELLE
Flexion 1 Une poutre droite, de longueur L et d’inertie constante est soumise à une charge uniformément répartie de taux p. Elle repose sur deux appuis.
Valeur Efficace d'une tension périodique
Principe Fondamental de la Statique (équilibre des solides)
Définition des actions mécaniques :
II Fonctions polynômes degré 2
Chapitre P4 : Mouvement d’un solide indéformable I) Quelques rappels de seconde : 1)Nécessité d’un référentielNécessité d’un référentiel 2)TrajectoireTrajectoire.
Transcription de la présentation:

CHAPITRE II Caractéristiques géométriques des sections planes Hautes Etudes d’Ingénieur 13, rue de Toul 59046 Lille Cedex Résistance des Matériaux Cours de Tronc Commun CHAPITRE II Caractéristiques géométriques des sections planes

Introduction Ultérieurement, pour calculer les contraintes et les déformations des solides étudiés, nous aurons besoin de savoir déterminer un certain nombre de caractéristiques géométriques des sections planes : Centre de gravité, Moment statique, Moments quadratiques

I. Centre de gravité Soit une section plane d’aire S définie dans un repère orthonormé Oxy. O x y G XG YG Les coordonnées du centre de gravité G sont définies par : Si la section S peut être décomposée en n sous-sections simples, d’aires connues Si et de centres de gravités connus (xGi et yGi) alors :

xG O y x 50 mm 10 mm Exemple : 2 G 20 1 Le point G se trouve sur l’axe de symétrie vertical de la section soit:XG=25mm

II. Moment statique Pour un élément dS, de coordonnées X et Y, le moment statique élémentaire par rapport à l’axe Ox est, par définition, la quantité : X O x y dS Y (S) Ce qui donne pour l’ensemble de la section : De même :

II. Moment statique Remarques : pour tout axe passant par le centre de gravité, le moment statique par rapport à cet axe est nul. si la section S peut être décomposée n en sous-sections simples, d’aires connues Si et de c.d.g connus (xGi et yGi) alors :

III. Moments quadratiques III.1 Moment quadratique par rapport à un axe Pour un élément dS, de coordonnées X et Y, le moment quadratique élémentaire par rapport à l’axe Ox est, par définition, la quantité : X O x y dS Y (S) Ce qui donne pour l’ensemble de la section : De même :

III. Moments quadratiques Remarques : Le moment quadratique est aussi appelé moment d’inertie de la section. Il est toujours positif.

III. Moments quadratiques III.2 Translation d’axes : Théorème de Huygens Soit un élément dS de S dans le repère Oxy, et soit le repère Gxy qui passe par le centre de gravité G de S et dont les axes sont parallèles à Ox et Oy. G x y dS O x y Soit : y YG y’ Ce qui donne : =S = moment statique/Gx = 0 Finalement, on obtient : De même :

III. Moments quadratiques Théorème : Le moment quadratique par rapport à un axe est égal au moment quadratique par rapport à un axe parallèle passant par le centre de gravité, augmenté du produit de la surface par le carré de la distance entre les deux axes. Calcul pratique : Si la surface peut être décomposée en n sous-sections de moments quadratiques connus IOxi et IOyi, alors:

III. Moments quadratiques Remarque : Généralement, pour le calcul des contraintes et des déformations, nous avons besoin de connaître le moment quadratique de la section par rapport à son centre de gravité. Donc si la section peut être décomposée en n sous-sections Si de centre de gravité Gi et de moment quadratique IGix ou IGiy connus:

III. Moments quadratiques III.3 Moment quadratique par rapport à un couple d’axe Ce moment quadratique est aussi appelé moment produit. Pour un élément dS, le moment produit élémentaire par rapport aux axes Ox et Oy est par définition la quantité: Ce qui donne pour l’ensemble de la section: Théorème de Huygens: Remarques: Le moment produit est une grandeur algébrique Si un des deux axes est un axe de symétrie pour la section alors IOxy=0

III. Moments quadratiques Calculs pratiques : Si la surface peut être décomposée en n sous-sections de moments produits connus IOxyi, alors: Si on cherche le moment produit d’une section par rapport à son centre de gravité et que celle-ci peut être décomposée en n sous-sections de c.d.g. Gi connus et de moments produits par rapport à leur c.d.g. connus IGixy, alors:

III. Moments quadratiques III.3 Moment quadratique par rapport à un point Ce moment quadratique est aussi appelé moment quadratique (ou d’inertie) polaire. Pour un élément dS, à une distance r de O,le moment quadratique polaire élémentaire par rapport à ce point est par définition la quantité: X O x y dS Y (S) r Ce qui donne pour l’ensemble de la section: Remarque: on peut écrire soit: Finalement, on obtient:

III. Moments quadratiques III.3 Moment quadratique par rapport à un point Changement d’origine (Théorème de Huygens) O x y G YG XG Soit: ou: Finalement, on obtient:

III. Moments quadratiques III.3 Remarques pratiques concernant le calcul des moments quadratiques Les moments quadratiques s’ajoutent et se retranchent. Cette propriété permet une détermination aisée dans le cas de surfaces composées d’éléments simples. 1 1 1 2 2 2 [1]+[2] [1]+[2] [1]-[2]

III. Moments quadratiques III.4 Moments quadratiques d’axes concourants III.4.1 Rotations d’axes Soit la section plane S, et deux systèmes d’axes Oxy et OXY obtenu par une rotation d’angle q. Les relations liant les coordonnées dans les deux repères sont: O x y dS (S) q X Y x y X Y Calculons le moment quadratique / OX :

III. Moments quadratiques III.4.1 Rotations d’axes Ce qui nous donne : En passant à l’angle double : On obtient :

III. Moments quadratiques III.4.1 Rotations d’axes De même, pour le moment quadratique / OY, on obtient : Calcul du moment produit : Soit :

III. Moments quadratiques III.4.2 Recherche des directions principales Il s’agit des directions donnant les moments quadratiques extrêmes (maximal et minimal). Pour les trouver , dérivons IOX et IOY / q et annulons ces dérivées: Ces deux expressions s’annulent pour :

III. Moments quadratiques III.4.2 Recherche des directions principales Cette expression nous donne deux directions conjuguées définies par les angles: O x y (A) Les directions ainsi déterminées s’appellent les directions principales (ou axes principaux), elles sont orthogonales et définies par la relation: X Y q1 q2 Remarques: Pour les directions principales, IOXY est nul. Tout axe de symétrie, est axe principal d’inertie. Tout axe perpendiculaire à un axe de symétrie est également axe principal d’inertie.

III. Moments quadratiques III.4.3 Expression des moments quadratiques principaux Pour connaître les expressions des moments quadratiques principaux (Imaxi et Imini), il suffit de remplacer, dans les formules donnant IOX, IOY et IOXY, la valeur de q par les solutions de l’équation: On obtient ainsi:

III. Moments quadratiques III.4.4 Représentation graphique – Cercle de Mohr Reprenons les expressions donnant IOX et IOXY Effectuons la somme des carrés, on obtient: Ce qui correspond à l’équation d’un cercle de centre C et de rayon R

III. Moments quadratiques III.4.4 Représentation graphique – Cercle de Mohr Iaxes Icouples d’axes O IOx IOxy C IOy -IOxy Imaxi Imini -2q1

Exercice résolu sur la détermination des axes principaux d’une section ENONCE DE L’EXERCICE

SOLUTION PAGE 1

SOLUTION PAGE 2

SOLUTION PAGE 3 FIN