Mesure de mW : systématiques envisageables au LHC N. Besson

Slides:



Advertisements
Présentations similaires
Reconstruction des paires (tt) Anne-Isabelle ETIENVRE,
Advertisements

La calibration des jets b dans ATLAS V.Giangiobbe LPC Clermont-Ferrand Journées Physique ATLAS France à AutransSession Jet/missingET/tau29/03/2006.
Evénements W,Z au LHC: Mesures et applications N.Besson, M.Boonekamp
GDR MoMaS, Marseille, 14/11/2003 Études des incertitudes liées aux stockages des déchets nucléaires Anca Badea, Olivier Gipouloux.
13/12/07JRJC décembre 20071/14 Étude de la structure du noyau à halo Li et du sous-système non lié Li (à l’aide de la cible active MAYA)
Etude du quark top au LHC dans l’expérience ATLAS Bernardo Resende sous la direction d’Emmanuel Monnier 18 avril 2005 Le LHC et ATLAS Physique du quark.
L’exercice d’aujourd’hui Analyse de quelques collisions proton- proton réelles dans CMS – Identifier les particules, déterminer ce qui s’est passé au cours.
Prompt photons et H  a DØ. - Section efficace triplement différentielle  -jet : - FERMILAB-PUB-08/081-E (HEP-EX 22 May 2008) - Conditions : 1.96.
Recherche d’un boson de Higgs chargé avec l’expérience ATLAS au LHC Responsables de stage: B. Clément, M. Klasen Carole Weydert Stage M2 PSA 1 er mars.
Comparing color edge detection and segmentation methods Projet TIM.
Généralisation de la comparaison de moyennes par Analyse de la variance (ANOVA)
I) mesure et erreurs de mesure 1) le vocabulaire à connaitre
A. Présentation 1.But Recherche de particules se désintégrant en - 2 leptons chargés (ex : Z → l + l -, où l + l - = e + e - ou µ + µ - ) - 2 photons(ex.
TEST D’HYPOTHESE POUR H->gg Tatiana Cervero, Francesco Polci.
M. Aharrouche page 1 PAF 2007 Mesure de l’asymétrie avant-arrière dans les événements Z  e+e- Mohamed Aharrouche* (LAPP-Annecy ) Introduction Mesure de.
A. Présentation But Recherche de particules se désintégrant en
Détecter des particules « pour de vrai » avec ATLAS
Statistiques descriptives univariées
Détecter des particules « pour de vrai » avec ATLAS
Détecter des particules « pour de vrai » avec ATLAS
Recherche de particules supersymétriques en R-parité violée, avec le couplage λ121 Les résultats actuels Limites attendues D0RunII et limites LEP/Hera/CDF/CMS.
Mesure du temps de vie du D0 avec le détecteur LHCb
Isolation calorimetrique
Détermination des propriétés texturales d’un solide poreux par traçage
Information, Calcul, Communication
Loi Normale (Laplace-Gauss)
Préparer par : Intissare et kaoutare
A. Présentation But Recherche de particules se désintégrant en
Analyse en Composantes Principales A.C.P. M. Rehailia Laboratoire de Mathématiques de l’Université de Saint Etienne (LaMUSE).
Impact du Brem sur la reconstruction des électrons des évènements H4l
Précision d'une mesure et chiffres significatifs
Fany Dudziak Réunion de physique ATLAS LAL le 24 janvier 2008
Simulation des nanostructures à base de nanorubans de graphène
Christelle Bruni, Thomas Vinatier Pour l’équipe PHIL
Statique 1 STM Conception Mécanique La mécanique branche de la physique qui étudie le mouvement des corps et les forces auxquelles ils sont soumis. La.
Stage de pré-thèse encadré par Marumi Kado* (NPAC juin 2007)
Processus traités : Z → uū gamma-jet
L’exercice d’aujourd’hui
La Conclusion.
A la recherche du boson W au LHC physicsmasterclasses
Introduction Mon travail de stage est dans le cadre de l’analyse statistique pour le processus H->γγ. J’ai commencé par des calculs de la significance.
Les plans de mélange Les plans d’expérience : Présentée par :
LES mesures des déplacements et des déformations
Les plans d’expérience: plans factoriels
Mesure de la Contribution du Spin des Gluons au Spin du Nucléon
Identification des électrons provenant de la désintégration
En particulier: Travail sur resolution en énergie des jets
Réunion BABAR-France 16 octobre 2008
Introduction à l'expérience BaBar
Recherche de résonance top antitop dans les collisions p-p à ATLAS
Fany Dudziak Réunion de physique ATLAS au LAL le 24 avril 2008
Rencontres Jeunes Chercheurs - Annecy
LHCb Trigger: introduction
Détecter des particules « pour de vrai » avec ATLAS
Calculs des incertitudes Lundi 30 Avril 2018 Master de Management de la Qualité, de la Sécurité et de l’Environnement.
DÉTECTION DE DÉFAUTS DANS DES HOLOGRAMMES DE PHASE
La méthode scientifique
La thèse Quelques conseils
2.4 La loi de vitesse d’une réaction chimique
Présentation 3 : Sondage aléatoire simple
Exercice du CERN Ne perdez pas la boule !.
Propriétés du quark top
La démarche scientifique
Le modèle standard : les grandes questions qui subsistent …
Programme d’appui à la gestion publique et aux statistiques
Conception cartographique
INTELLIGENCE ARTIFICIELLE
PROGRAMMATION SCIENTIFIQUE EN C
STATISTIQUE INFERENTIELLE LES TESTS STATISTIQUES.
Couche limite atmosphérique
Transcription de la présentation:

Mesure de mW : systématiques envisageables au LHC N. Besson Résumé de la note ATL-COM-PHYS-2007-047 N. Besson, M. Boonekamp (CEA-Saclay) E. Klinkby, S. Mehlase, T. Petersen (NBI) Détermination de mW : méthode Sources d’erreurs systématiques Quantification des systématiques : méthode Quantification des systématiques : estimations Corrélations Perspectives et conclusion N. Besson

Introduction & détermination de mW : méthode W(LHC) ~ 20 nb. Avec un an,10 fb-1 et la sélection suivante 1 lepton pt > 25 GeV dans  2.5 en , Emanquante > 25 GeV pas de jet Et > 20 GeV recul hadronique < 30 GeV = 20%  4 107 evts/an/canal (e, )  préc. stat. sur mW = 2 MeV. Distribution sensible à mW : ptl ou mT = Test de 2 entre la distribution ptl et des distributions de références ptl(m) caractérisées par une masse donnée. Ajustement d’une parabole. Dans la suite, illustrations avec ptl seulement et toujours pour 10 fb-1 N. Besson

Sources d’erreur systématiques Ca marche i.e. pas de biais si il y a les mêmes ingrédients dans les références et les données, c.à.d. tout ce qui peut distordre la distribution choisie. Sources expérimentales : Échelle d’énergie des leptons Résolution en énergie des leptons Efficacité de reconstruction (si elle dépend de pt. Donc affecte moins les muons que les électrons) Sources théoriques : Qui affectent directement la distribution ptl : FSR Qui affectent ptl via les distributions du W yW et ptW : W, pdfs, ISR Sources liées à l’environnement expérimental : Bruits de fonds Événement sous-jacent Empilement Angle de croisement des faisceaux N. Besson

Quantification des erreurs systématiques : méthode 1) Estimation d’un effet en s’appuyant sur notre excellente connaissance du Z Z(LHC) ~ 2 nb. Avec 10 fb-1 et une sélection similaire aux événements W ( = 20%)  3.5 106 evts/an/canal (e, ) Par ex. : échelle d’énergie absolue des électrons,  estimée avec la méthode des « templates » (cf. PAF06 et ATL-PHYS-PUB-2006-007) : rel = 2 10-5 2) Propagation de l’incertitude à mW On utilise la méthode précédente : test de 2 entre des références caractérisées par un 0 et des masses de W mi, et un ensemble de « pseudo données » caractérisées par des k, tirés au hasard autour de 0 selon rel estimé en 1) et une masse m0. On obtient alors mW dispersion de mfit k – m0 versus rel dispersion de (k - 0)/0 800 MeV/% N. Besson

Quantification des erreurs systématiques : estimations Sources expérimentales : Échelle d’énergie des leptons & Résolution en énergie des leptons Efficacité de reconstruction Sources théoriques : FSR Distributions du W yW et ptW : W, pdfs, ISR Sources liées à l’environnement expérimental : Bruits de fonds Événement sous-jacent Empilement Angle de croisement des faisceaux N. Besson

Échelle d’énergie & résolution des leptons Rappel des résultats montrés à PAF06 et ATL-PHYS-PUB-2006-007 : échelle d’énergie et résolution des leptons en fonction de leur énergie. Propagation à mW : mW( l ) = 4 MeV et mW( l ) = 1 MeV N. Besson

Quantification des erreurs systématiques : estimations Sources expérimentales : Échelle d’énergie des leptons & Résolution en énergie des leptons Efficacité de reconstruction Sources théoriques : FSR Distributions du W yW et ptW : W, pdfs, ISR Sources liées à l’environnement expérimental : Bruits de fonds Événement sous-jacent Empilement Angle de croisement des faisceaux N. Besson

Efficacité de reconstruction du lepton PAF06 : détermination de l’efficacité de reconstruction des électrons avec des evts Z→ee. Avec 10 fb-1, systématique induite sur mW mW() ~ 8 MeV. Amélioration possible en diminuant l’influence de la zone chahutée : avec pte>37 GeV  mW() ~ 3 MeV CSC CSC 20 GeV 400 GeV Pas de forte dépendance en pt N. Besson

Quantification des erreurs systématiques : estimations Sources expérimentales : Échelle d’énergie des leptons & Résolution en énergie des leptons Efficacité de reconstruction Sources théoriques : FSR Distributions du W yW et ptW : W, pdfs, ISR Sources liées à l’environnement expérimental : Bruits de fonds Événement sous-jacent Empilement Angle de croisement des faisceaux N. Besson

Incertitudes théoriques : FSR Importance numérique des FSR : 99% en moyenne!  800 MeV sur mW. Il faut donc être sûr de la stabilité. PHOTOS à  ordres : stabilité à qques 10-4  mW  1 MeV + LEP1. D’autre part ce W/Z à prendre en compte. N. Besson

Quantification des erreurs systématiques : estimations Sources expérimentales : Échelle d’énergie des leptons & Résolution en énergie des leptons Efficacité de reconstruction Sources théoriques : FSR Distributions du W yW et ptW : W, pdfs, ISR Sources liées à l’environnement expérimental : Bruits de fonds Événement sous-jacent Empilement Angle de croisement des faisceaux N. Besson

Largeur du W Relation linéaire entre la variation de mW ajustée et la largeur injectée : 1.2 MeV/% Mesure : W = 2.141  0.041 GeV Si on attend une amélioration d’un facteur 5 (comme pour la masse) alors mW(W) = 0.5 MeV. Juste exercice de style : on ajustera simultanément la masse et la largeur. N. Besson

Quantification des erreurs systématiques : estimations Sources expérimentales : Échelle d’énergie des leptons & Résolution en énergie des leptons Efficacité de reconstruction Sources théoriques : FSR Distributions du W yW et ptW : W, pdfs, ISR Sources liées à l’environnement expérimental : Bruits de fonds Événement sous-jacent Empilement Angle de croisement des faisceaux N. Besson

Distributions du W : ptW Distribution ptW  pt intrinsèque des partons et parton shower initiale. Universalité des effets entre W et Z. Avec des états finals e+e-, on peut mesurer ptll en fonction de la masse invariante mll, avec une grande précision dans le domaine mZ mais aussi aux basses masses  grand bras de levier qui permet de contrôler la région mW avec précision : avec 10 fb-1, on attend une précision sur pt dans la région mW de ~8 MeV. Avec la même technique (PsD avec un biais sur ptW puis ajustement de mW) on trouve une pente de 0.3 : 8 MeV  mW = 3 MeV DY W Z N. Besson

Quantification des erreurs systématiques : estimations Sources expérimentales : Échelle d’énergie des leptons & Résolution en énergie des leptons Efficacité de reconstruction Sources théoriques : FSR Distributions du W yW et ptW : W, pdfs, ISR Sources liées à l’environnement expérimental : Bruits de fonds Événement sous-jacent Empilement Angle de croisement des faisceaux N. Besson

Distributions du W : yW (1) Forme de yW essentiellement donnée par les pdfs. Outil d’étude : CTEQ6.1  1 meilleur fit + 40 lots correspondant au décalage d’une des 20 valeurs propres de la matrice de covariance de  1 . Incertitude de ~ 25 MeV W et Z produits via les quarks de la mer  corrélation forte entre yZ et yW quand les pdfs varient. Barres d’erreur attendues au LHC pour 10 fb-1. N. Besson

Distributions du W : yW (2) amélioration d’un facteur 20 soit mW(yW) ~ 1 MeV De plus, possibilité de reconstruire yW sur tout l’intervalle pertinent. distribution complète yW distribution avec |l|<2.5 distribution complète yZ distribution avec les 2 leptons / |l|<2.5 distribution avec 1 lepton / |l|<4.9 distribution accessible avec  de LHCb N. Besson

Quantification des erreurs systématiques : estimations Sources expérimentales : Échelle d’énergie des leptons & Résolution en énergie des leptons Efficacité de reconstruction Sources théoriques : FSR Distributions du W yW et ptW : W, pdfs, ISR Sources liées à l’environnement expérimental : Bruits de fonds Événement sous-jacent Empilement Angle de croisement des faisceaux N. Besson

Sources environnementales Bruits de fond : Exemple : W → (→l ) . BdF principal et irréductible mais dynamique connue. Normalisation à 2.5% près. Influence de la forme ~ 20% de l’effet de la normalisation  0.4 MeV sur mW. En tout mW < 1MeV. 2) Empilement et événement sous jacent  ~ 40 MeV de fond dans un cluster électronique de  = 0.1x0.1  à soustraire avant de calculer l’échelle d’énergie. Etude de la réponse calo loin des objets de grand pt  mW <1 MeV. N’affecte pas les . 3) Angle de croisement des faisceaux : en moyenne 142.5 rad  jusqu’à ~ 10 MeV de ptW mais nul en moyenne. A comparer à l’effet des ISR 100 fois plus important  mW < 0.1 MeV. signal W→ W→ Z→l(l) QCD Z→ N. Besson

Corrélations (1) 1) Echelle d’énergie absolue vs efficacité de reconstruction (cf. PAF06) perte de précision mais pas de biais. 2) Echelle d’énergie absolue vs pdfs Incertitude de 2.5 MeV sur mZ donc 2.5xmW/mZ à rajouter aux 25 MeV de distorsions directes. Mais gain d’un facteur 20! N. Besson

Corrélations (2) 3) Echelle d’énergie vs corrections QED Econe : un cluster (R ~ 0.1) Echelle d’énergie = mélange d’électron (~99%) et de photons. Dans le calo d’ATLAS différence de réponse ~ 1%. Electron (Z→ee)  électron (W→e) de 0.6%  correction de 6 10-5 qui pourrait induire un biais de 5 MeV. Mais bonne stabilité théorique. N. Besson

Résumé (10 fb-1, ptl) Source effet mW (MeV) Modèle théorique W 0.5 yW 1 ptW 3 radiation QED <1 Mesures du lepton échelle et linéarité 4 résolution efficacité 3 (e); <1 () Bruits de fonds W →  0.4 Z → l (l) 0.2 Z → 0.1 événements jets Pile-up et UE <1 (e); ~0 () Angle de croisement faisceaux <0.1 total ~6 !!! Projection par canal leptonique pour 10 fb-1 N. Besson

Perspectives : utilisation de E/p (1) Effet le plus important : échelle d’énergie. CSC : plus de matière, détecteur plus « réaliste » : résultat moins bon que DC2 ou « Rome ». Dû aux queues non gaussiennes: N. Besson

Utilisation de E/p (2) Réponse du calorimètre :Exp(b E)  Gauss(E/E0,s) Réponse de l’iD : 1/(p-a)a  Gauss(p,s) pvraie/prec Erec/Evraie Récupération des paramètres de chaque fonction sur E/p E/p : convolution des 2 N. Besson

Conclusion Etude prospective de l’évaluation des erreurs systématiques sur mW au LHC. Puissance de la méthode : utilisation de toutes les informations qui viennent du Z via les distributions : dZ/dM, dZ/dy et dZ/dpt. Possible d’atteindre une valeur compétitive (CDF seul < 50 MeV, combinaison ~25 MeV, futur ~15 MeV). Futur : passer à l’analyse concrète pour préparer la mesure. N. Besson

En plus N. Besson

Méthode Echelle de masse : exemple avec Z –> ee. Echelle et résolution sont corrélées : ajustement simultané nécessaire Références : un ensemble d’histogrammes de masse invariante obtenus à partir des électrons générés que l’on biaise d’un facteur a, et auxquels on impose une résolution en a*E. Chaque histogramme est donc caractérisé par un couple (a,a). Test de c2 entre la forme de la masse invariante des « données » et les références dans les « deux dimensions » N. Besson

Résultat : exemple avec les données « de Rome » Echelle de masse : application à « Rome » Z  ee Fit Application  Résultat satisfaisant! N. Besson

Echelle d’énergie et résolution vs. E Pour contrôler la linéarité, on répète l’analyse en fonction de l’énergie On divise les Z en lots (i,j) tels qu’un électron soit dans le bin Ei et un dans Ej. Pour chaque couple (i,j) on fait le même exercice que précédemment et on obtient des bij (facteurs d’échelle) et des aij (paramètres de résolution) Pour l’échelle d’énergie: Analyse en masse uniqt Analyse en énergie N. Besson

Echelle d’énergie et résolution vs. E Et pour la résolution : permet de déterminer la forme de la résolution indépendamment de la forme de la résolution utilisée dans les références. terme cst  0 ss terme cst N. Besson

Incertitudes liées aux pdfs On discute les quarks de première génération pour simplifier Les pdfs CTEQ6 font l’hypothèse suivante (x ) quand x → 0 (i.e. x < 10-3) Cette hypothèse peut être à l’origine de la forte corrélation observée entre dZ et dW puisque dZ ~ dW ~ donc dZ ~ dW Peut-on (doit-on) relâcher cette hypothèse et de combien? N. Besson

Mesure de à Fermilab avec l’expérience E866 Faisceaux de protons sur hydrogène et deutérium ~ 1 pour x ~ 0.01 N. Besson

Décorrélation W/Z Si , on a dW ~ dZ x (1 + ) avec Que vaut ? N. Besson

N. Besson