Monte Carlo Algorithm for simulation of phonon transport in silicium nanowires Scattering mechanism 18 June 2013 Jérôme LARROQUE.

Slides:



Advertisements
Présentations similaires
Smoking a regular verb cigar: the –er version The keys to putting together what you want to say!
Advertisements

14 April LTQ5R5 1 LHe Q5R5 New Calibrated probe Reported by Juan CASAS AT – ACR - IN.
QU’EST-CE QUE TU FAIS?.
Z SILICON DRIFT DETECTOR IN ALICE When a particle crosses the thickness of SDD electrons are released. They drift under the effect of an applied electric.
Formation de la précipitation
NAME: Abdul Saleem Mir Enrollment Number: 49/2010 7th ELECTRICAL
Ce document est la propriété de Peugeot Sport et ne peut être reproduit ou communiqué sans autorisation. This document is the property of Peugeot Sport.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
Méchanic at the CPPM – 10/01/06 Françoise RIVIERE – Jean-Luc GIMENEZ – Daniel Labat Pierre KARST IR Detector - Test cryostat : Machining and polishing.
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
 Components have ratings  Ratings can be Voltage, Current or Power (Volts, Amps or Watts  If a Current of Power rating is exceeded the component overheats.
IP Multicast Text available on
Template Provided By Genigraphics – Replace This Text With Your Title John Smith, MD 1 ; Jane Doe, PhD 2 ; Frederick Smith, MD, PhD 1,2 1.
DIFFUSION IN SOLIDS  FICK’S LAWS  KIRKENDALL EFFECT  ATOMIC MECHANISMS Diffusion in Solids P.G. Shewmon McGraw-Hill, New York (1963)
Brazing TCSPM jaw (Sept. 2016)
Génération Injection selon vallée dans Monaco
Theme Three Speaking Questions
Dongzhe LI M2 Nanosciences Encadrant : Jérôme SAINT-MARTIN
Photons Episode 3.
ABOUT ME/ À PROPOS DE MOI
Les couleurs et les animaux
MODELE EN PASTILLE POUR L'ETUDE D'UNE GOUTTE ALIMENTEE SOUMISE A PERTURBATIONS Kwassi Anani1, Roger Prud’homme2, Séna Amah d’Almeida1 and Kofi Seylom.
Acquisition des données
WP5 : Initial design of the glider
Réunion service Instrumentation Activités CMS-Traces
Why is it important to plan ahead for the future?
ABAQUS I Summary Program Capability Components of an ABAQUS Model Elements, Materials and Procedures Modules (analysis, pre and post processing) Input.
MODELE NUMERIQUE ET CARACTERISATION EXPERIMENTALE
Integral Field Spectrograph Opto-mechanical design of the demonstrator
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
Theory of Relativity Title of report Encercle by Dr. M.Mifdal Realized by ZRAR Mohamed.
Phuong Nguyen French-1Honor Mr. Georges Due date: April 9th 2012
MOUNTING OF THE EIFFEL TOWER
PRODUCTION LOGISTICS MANAGEMENT. I l c p INTRODUCTION PRODUCTION LOGISTIC CONCLUSION Te sit nusquam mediocrem. Fastidii dissentias nam an, simul deleniti.
Peppa Pig.
Les Fruits :.
Quels sont tes passes temps préfèrés?
INVERTER LOAD SPEED CONTROLLER Power demand Speed reference ENGINE 230/400V 50Hz/60Hz PMGPMG 1 f = Hz Speed =var Island Operation of the Adjustable.
MODELING OF INDUCTION HARDENING PROCESS PART 1: INDUCTION HEATING Dr. Jiankun Yuan Prof. Yiming (Kevin) Rong Acknowledgement:
Blaise Pascal Father of Modern Calculators Pascal’s works in Mathimatics Pascal’s works in Physics Pascal’s works in Philosophy.
1. Financial (Accounting) Statements  Financial or Accounting statements are used for reporting corporate activity. 2 For Stakeholders.
P&ID SYMBOLS. P&IDs Piping and Instrumentation Diagrams or simply P&IDs are the “schematics” used in the field of instrumentation and control (Automation)
“Confidential –Internal Halliburton Use Only. © 2004 Halliburton. All Rights Reserved.” Stimulation Techniques Fracturing Fluids Proppants.
When thermoelectric systems meet the Feymann ratchet: harmonic response and feedback Christophe Goupil, Henni Ouerdane, Yann Apertet, Philippe Lecoeur.
Introduction to Computational Journalism: Thinking Computationally JOUR479V/779V – Computational Journalism University of Maryland, College Park Nick Diakopoulos,
Six months after the end of the operations
La famille ER conjugaison
Plan du cours A. Généralités Introduction
Ruoqi He & Chia-Man Hung
Qu’est-ce que tu as dans ta trousse?
Quelle est la date aujourd’hui?
Optimisation des 2 Picarros
Nous allons apprendre…
Roots of a Polynomial: Root of a polynomial is the value of the independent variable at which the polynomial intersects the horizontal axis (the function.
Quelle est la date aujourd’hui?
Standards Certification Education & Training Publishing Conferences & Exhibits Automation Connections ISA EXPO 2006 Wed, 1:00 Oct 18.
Manometer lower pressure higher pressure P1P1 PaPa height 750 mm Hg 130 mm higher pressure 880 mm Hg P a = h = +- lower pressure 620 mm Hg.
Programmation de l'égalité des genres dans l'action humanitaire
Salut cher orange! Monsieur Couleur
Etude de l’ascension d’un glaçon sphérique au sein d’une colonne d’eau
Avoiding the Pitfalls of Bad Slides Tips to be Covered Outlines Slide Structure Fonts Colour Background Graphs Spelling and Grammar Conclusions Questions.
Techniques de l’eau et calcul des réseaux
University : Ammar Telidji Laghouat Faculty : Technology Department : Electronics 3rd year Telecommunications Professor : S.Benghouini Student: Tadj Souad.
FROM THE NEAR FIELD OF NANO- ANTENNAS TO THE FAR FIELD OF METASURFACES Thesis Supervisor: Dr. Yannick De Wilde Co-supervisor: Dr. Patrick Bouchon.
Properties of ElectroMagnetic Radiation (Light) Introduction A.)Spectroscopy: A method of analysis based on the interaction, absorption or production of.
CRA HR Modernization Journey
Comparaison des isotopes H− et D− par RX dans 7LiH et 7LiD
Dematerialization and use of social networks in public administrations: Emergence of Citizen Relationship Management (CiRM) in Morocco EL YACHIOUI Maryam.
IMPROVING PF’s M&E APPROACH AND LEARNING STRATEGY Sylvain N’CHO M&E Manager IPA-Cote d’Ivoire.
Transcription de la présentation:

Monte Carlo Algorithm for simulation of phonon transport in silicium nanowires Scattering mechanism 18 June 2013 Jérôme LARROQUE

Context Heat engine Thermoelectric effect Hot Source Fluid -> electrons + phonons QH electricity heat waste w Qc Small device + Low mechanical wear Cold Source But low efficiency now … Standard Mechanical heat engine => Mechanical wear

Applications Generation of electric power Cooling Harvesting of heat waste of computing processor to supply low-consumption devices like fans Avoiding heating of electronic devices to increase their reliability Cooling electronic devices below ambient temperature for devices which need it Long-life generators for implanted medical devices like sensors or prosthesis

Why is phonons transport studied? 𝑍𝑇= 𝑆 2 𝜎𝑇 κ Figure of merit Thermal conductivity Electrical conductivity Seebeck coefficient = thermal transport ≠ electric charge transport Phonons transport Limiting factor for the thermoelectric efficiency

Outline Harmonic oscillation in sillicon Monte Carlo algorithm Ballistic regime Scattering processes

Outline Harmonic oscillation in sillicium Monte Carlo algorithm Ballistic regime Scattering processes

Phonon dispersion in silicon First Brillouin zone Spherical first Brillouin zone with radius 2𝜋 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 Quadratic fit along the direction [100] Dispersion relationship (6 phonon modes) 4 isotropic dispersion relations : 𝜔=𝑎+𝑏𝑘+𝑐 𝑘 2 Low computational time

Phonon dispersion in silicon First Brillouin zone Spherical first Brillouin zone with radius 2𝜋 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 Quadratic fit along the direction [100] Dispersion relationship (6 phonon modes) 4 isotropic dispersion relations : 𝜔=𝑎+𝑏𝑘+𝑐 𝑘 2 Low computational time

Outline Harmonic oscillation in sillicium Monte Carlo algorithm Ballistic regime Scattering processes

Monte Carlo algorithm Initialization of phonon states in cells Random draw of phonon states Time step 𝑡 𝑝 =∆𝑡 Inject phonon through each side Random draw of phonon states Motion of phonons during the time step Random draw of times of free-flight

Algorithm for motion Time step 𝑡 𝑝 =∆𝑡 𝑡 𝑝 = 𝑡 𝑝 − 𝑡 𝑚 Legend : 𝑡 𝑣 : time of free-flight 𝑡 𝑠 : cell exit time Time step 𝑡 𝑝 =∆𝑡 𝑡 𝑝 = 𝑡 𝑝 − 𝑡 𝑚 Random draw: 𝑡 𝑣 Calculation : 𝑡 𝑠 𝑡 𝑝 = 𝑡 𝑝 − 𝑡 𝑚 interface processing 𝑡 𝑚 =min⁡( 𝑡 𝑝 , 𝑡 𝑣 , 𝑡 𝑠 ) Scattering processing: Random draw of the scattering mecanism and the final state 𝑟 = 𝑟 + 𝑡 𝑚 × 𝑣 𝑡 𝑚 = 𝑡 𝑠 𝑡 𝑚 = 𝑡 𝑣 𝑡 𝑚 ? 𝑡 𝑚 = 𝑡 𝑝 End

Outline Harmonic oscillation in sillicium Monte Carlo algorithm Ballistic regime Scattering processes

Results in ballistic regime My result 𝑇 𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑞𝑢𝑒 = 𝑇 ℎ 4 + 𝑇 𝑐 4 2 1 4 Lacroix, 2005

Results in ballistic regime fortran matlab Thermic flux through a silicon nanowire at 300K in an hypothetic ballistic regime as function of the difference of temperature (Mainly Acoustic modes)

Outline Harmonic oscillation in sillicium Monte Carlo algorithm Ballistic regime Scattering processes

Phonon-phonon scattering Three-phonon scattering 2 ways of scattering Normal process Umpklapp process A O A O Brillouin zone Brillouin zone Conservation of wave vector « No conservation » of wave vector Low-impact on thermal transport High-impact on thermal transport

Phonon-phonon scattering Scattering rates Acoustic modes Optical modes LA N et U processes 𝜏 𝐿𝑁𝑈 −1 = 𝐵 𝐿 𝜔 2 𝑇 3 TA N process 𝜏 𝑇𝑁 −1 = 𝐵 𝑇 𝜔 𝑇 4 TA U process 𝜏 𝑇𝑈 −1 = 𝐵 𝑇𝑈 𝜔 2 sinh⁡ ℎ 𝜔 𝑘 𝐵 𝑇 À 300 K, 𝜏 𝑜 =3,5 𝑝𝑠 Holland 1963 Menéndez 1984 et Lang 1999

Scattering simulation Acoustic modes Optical modes Low group velocity Holland’s scattering frequency Low impact on thermal transport Lacroix’s model for post-scattering processing Ignore optical mode Holland’s and Lacroix’s approach for phonon-phonon scattering is easy to implement gives thermal conductance coherent with experimental results ignores optical phonons (who are the most reactive with electron)

Scattering simulation Lacroix’s model for post-scattering processing Scattered phonon vanishes Random draw of a new phonon with a new mode and a new norm of velocity Normal process Keep direction of the phonon Umpklapp process Random draw of the new direction In mean, conserves thermal flux In mean, does not conserve thermal flux

Scattering simulation Cumulative distribution function for random draw of new phonons (Most obvious way) temperature state 𝐹 𝑠𝑐𝑎𝑡 𝑇,𝑖 = 𝑗=1 𝑖 𝑁 𝑗 𝑇 𝑗=1 𝑁 𝑏 𝑁 𝑗 𝑇 density of phonon in state j and at temperature T

Scattering simulation But need to respect Kirchhoff law (creation balances destruction) Cumulative distribution function for random draw of new phonons temperature state 𝐹 𝑠𝑐𝑎𝑡 𝑇,𝑖 = 𝑗=1 𝑖 𝑁 𝑗 𝑇 𝑃 𝑠𝑐𝑎𝑡 (𝑚𝑜𝑑𝑒 𝑗 ) 𝑗=1 𝑁 𝑏 𝑁 𝑗 𝑇 𝑃 𝑠𝑐𝑎𝑡 (𝑚𝑜𝑑𝑒 𝑗 ) density of phonon in state j and at temperature T Probability of disappearance : 𝑃 𝑠𝑐𝑎𝑡 𝑚 =1−𝑒𝑥𝑝 −∆𝑡 𝜏 𝑚 Time step Time of mean free path

Scattering test Simulation of a cube (500×500×50 nm3) of silicon insulated

Scattering test Final distribution of phonons wave vector

Conclusion Optical phonons can be ignored for thermal transport (6%) but they are essential for electrical transport (soon) Holland’s and Lacroix’s models of scattering are easy enough to ensure the speed of the Monte-Carlo algorithm

Simulation de Monte-Carlo de phonons

Monte-Carlo de phonons Réalisation d’un simulateur de Monte-Carlo de phonons Code parallélisé en Fortran 90 Etudier le transport thermique dans les nanofils Etudier le transport thermoélectrique dans les nanofils

Sommaire Description du simulateur Vérification de fonctionnement

1. Description du simulateur

Maille parallélépipédique rectangle Structure à simuler Maille parallélépipédique rectangle Paramètres: Position x, y et z Dimension dx, dy et dz Matériaux Type des 6 faces Exemple :

Matériaux 6 modes de phonons : 1 longitudinal et 2 transversal pour optiques et acoustiques Relation de dispersion parabolique isotrope : 𝜔=𝑎+𝑏𝑘+𝑐 𝑘 2 Première zone de Brillouin sphérique de diamètre 2𝜋 𝑝𝑎𝑟𝑎𝑚è𝑡𝑟𝑒 𝑑𝑒 𝑚𝑎𝑖𝑙𝑙𝑒

Distribution volumique À l’équilibre thermodynamique : Nombre de phonons dans le volume V ayant un vecteur d’onde entre 𝑘 𝑒𝑡 𝑑 𝑘 : 𝑛 𝑘 𝑘 𝑑 𝑘 𝑥 𝑑 𝑘 𝑦 𝑑 𝑘 𝑧 =𝑉× 𝑔 8 𝜋 3 ×𝑓 𝐵𝐸 (𝜔 𝑘 ) 𝑑 𝑘 𝑥 𝑑 𝑘 𝑦 𝑑 𝑘 𝑧

Surfaces 3 types de faces : Face transparente Légende : 3 types de faces : Face transparente Face spéculaire (réflexion miroir) Face d’injection

Mécanisme d’injection Face d’injection : Face supposée en contact avec une autre maille de volume infinie, à l’équilibre thermodynamique à une température fixée Nombre de phonons injectées pendant dt ayant un vecteur d’onde entre 𝑘 𝑒𝑡 𝑑 𝑘 à travers la surface S : 𝑛 𝑘 𝑘 𝑑 𝑘 𝑥 𝑑 𝑘 𝑦 𝑑 𝑘 𝑧 𝑑𝑡=𝑆 𝑣 𝑧 ( 𝑘 ) 𝑑𝑡 × 𝑔 8 𝜋 3 ×𝑓 𝐵𝐸 (𝜔 𝑘 ) 𝑑 𝑘 𝑥 𝑑 𝑘 𝑦 𝑑 𝑘 𝑧 Volume 𝐷𝑂𝑆( 𝑘 )

Principe du Monte-Carlo Particules localisées dans l’espace réel et réciproque Position et vitesse Tirage au sort de la position et de la vitesse d’un grand nombre de particules à l’initialisation et après chaque collision + Tirage au sort du temps de libre parcours Monte-Carlo =

Algorithme de Monte-Carlo Pas de phonons dans les mailles Pas de temps 𝑡 𝑝 =∆𝑡 Ajout des phonons injectés pendant le pas de temps Mouvement de tous les phonons

Algorithme du mouvement Légende : 𝑡 𝑣 : temps de libre parcours 𝑡 𝑠 : temps de sortie de maille Pas de temps 𝑡 𝑝 =∆𝑡 𝑡 𝑝 = 𝑡 𝑝 − 𝑡 𝑚 Tirage au sort : 𝑡 𝑣 Calcul : 𝑡 𝑠 𝑡 𝑝 = 𝑡 𝑝 − 𝑡 𝑚 Eventuel traitement de l’interface + Changement de la maille 𝑡 𝑚 =min⁡( 𝑡 𝑝 , 𝑡 𝑣 , 𝑡 𝑠 ) Traitement de la collision : Tirage au sort du type de collision puis de la nouvelle vitesse 𝑟 = 𝑟 + 𝑡 𝑚 × 𝑣 𝑡 𝑚 = 𝑡 𝑠 𝑡 𝑚 = 𝑡 𝑣 𝑡 𝑚 ? 𝑡 𝑚 = 𝑡 𝑝 Fin

2. Vérification de fonctionnement

Paramètres communs Maille cubique Volume : 1mm3 1 type de collision : collisions élastiques isotropes Fréquence moyenne de collision : 10-10 Hz Vitesse des phonons entre 0 et 10000 m.s-1 Libre parcours moyen de l’ordre de 1011 km Régime balistique

1er test : faces d’injection 1 maille cubique avec 6 faces d’injection à température 300 K Objectif : test des faces d’injection et du mouvement des phonons

1er test 1er test : distribution des phonons injectés par 1 face LA TA Vx = composante normale TO LO

1er test 1er test : distribution des phonons injectés par 1 face LA TA Vy = composante tangentielle TO LO

1er test 1ème test : distribution des phonons dans le volume LA TA LO TO

2ème test : faces transparentes 7 mailles cubiques à 300 K 1 face d’injection (en rouge) 12 faces transparentes 29 faces spéculaires Objectif : test des surfaces transparentes et des surfaces spéculaires

3ème test : faces de contrôle 2 mailles cubiques 2 faces d’injection, à 200 K (en vert) et à 300 K (en rouge) 1 face transparente de contrôle (en jaune) Objectif : test des surfaces de contrôle

3ème test 3ème test : distribution des phonons traversant LA TA Vx = composante normale LO TO

3ème test 3ème test : distribution des phonons traversant LA TA Vy = composante normale LO TO

Prochain développement Objectif à court terme : Ajout de collisions plus réalistes Vérification en régime diffusif Optimisation du temps de calcul Résolution 3D ↔ 2D Objectif à long terme : Implémentation de matériaux plus complexes Implémentation d’autres interfaces

Premières vérifications concluantes Conclusion Premières vérifications concluantes En bonne voie