Les agents pédagogiques

Slides:



Advertisements
Présentations similaires
Primary French Presentation 2 Saying How You Are.
Advertisements

Les agents pédagogiques
Making PowerPoint Slides Avoiding the Pitfalls of Bad Slides.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
La Planète a besoin de vous. 1. List 3 environmental problems mentioned:  l’eau est pollué  les plantes disparaît  les mers sont sales  l’air est.
Traffic Sign Recognition Jacob Carlson Sean St. Onge Advisor: Dr. Thomas L. Stewart.
IP Multicast Text available on
DIFFERENTIATION NO ONE CAN COMPEL A STUDENT TO LEARN. (MEIRIEU)
Update on Edge BI pricing January ©2011 SAP AG. All rights reserved.2 Confidential What you told us about the new Edge BI pricing Full Web Intelligence.
Overview of SUN’s Unix Campus-Booster ID : **XXXXX Copyright © SUPINFO. All rights reserved Introduction to Solaris 10.
The Basis of the Servqual Model The Gaps The Key Service Dimensions Causes & Solutions to Gaps.
jeudi, le quatorze septembre
Notes for teacher. You can just use slides 2-5 if you wish. If you want to do the practical activity (slides 6-8) you will need to: print off Slide 6.
Formules en 2 étapes 1MPES4
What about discrete point skills?
LES MODULES PLAN DE DEVELOPPEMENT PERSONNEL LEADERSHIP ART ORATOIRE.
Détermination des coûts et établissement du budget pour la mise en oeuvre des activités conjointes de lutte contre la tuberculose et le VIH Document No.
Qu’est-ce qu’ils aiment faire?
mardi, le douze septembre
IDL_IDL bridge The IDL_IDLBridge object class allows an IDL session to create and control other IDL sessions, each of which runs as a separate process.
Have students correct the sentences by re-writing them correctly without their notes. They can work in pairs. Then reveal the answers one by one, discussing.
Français 2, 28 Novembre 2016 Dans le livre de français 1, ouvrez vos livres à la page 369. Faites le 23. How can you jump off a fifty-foot ladder and not.
Cross Cutting Mapping Project
Technologies de l’intelligence d’affaires Séance 14
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
TASK for Tuesday 23rd; Thursday 26th and Monday 30th
Qui est-ce?.
CRS: Professional Certification April 2013?
© 2004 Prentice-Hall, Inc.Chap 4-1 Basic Business Statistics (9 th Edition) Chapter 4 Basic Probability.
Excellent decision to learn a language! Goal setting.
Leadership Styles Mrs. Keith Main Types of Leadership Styles 1.The Autocratic or Authoritarian Leader 2.The Democratic or Participative Leader.
Quel type de compétences peut-on apprendre en participant à des activités de robotique? Recherche et raisonnement déductif.
Psychological Approaches to Dreams why people dream? five major approaches to psychology: Psychodynamic, humanistic, behavioral, cognitive, and neuroscience.
G. Peter Zhang Neurocomputing 50 (2003) 159–175 link Time series forecasting using a hybrid ARIMA and neural network model Presented by Trent Goughnour.
Lect12EEE 2021 Differential Equation Solutions of Transient Circuits Dr. Holbert March 3, 2008.
Essai
Introduction to Computational Journalism: Thinking Computationally JOUR479V/779V – Computational Journalism University of Maryland, College Park Nick Diakopoulos,
High-Availability Linux Services And Newtork Administration Bourbita Mahdi 2016.
C’est quel numéro? Count the numbers with pupils.
évaluation permettant d’améliorer
Le soir Objectifs: Talking about what you do in the evening
Pato et Elly font du sport aussi.
L’objectif: to know the words for school subjects in French.
J’aime ma culture francophone, j’aime notre façon d’être, notre joie de vivre, nos traditions, nos manies. Je veux que mes enfants vivent ça et qu’ils.
Qu’est-ce que tu as dans ta trousse?
Révision – Phrases Importantes
Forum national sur l’IMT de 2004.
POLITIQUES EN FAVEUR DES JEUNES
J’aime ma culture francophone, j’aime notre façon d’être, notre joie de vivre, nos traditions, nos manies. Je veux que mes enfants vivent ça et qu’ils.
C’est quel numéro? Count the numbers with pupils.
Mr MAJDOUB Med Amine Computer Science 9th Level FB : Mr Majdoub Classroom.
Quelle est la date aujourd’hui?
1-1 Introduction to ArcGIS Introductions Who are you? Any GIS background? What do you want to get out of the class?
Making PowerPoint Slides Avoiding the Pitfalls of Bad Slides.
POWERPOINT PRESENTATION FOR INTRODUCTION TO THE USE OF SPSS SOFTWARE FOR STATISTICAL ANALISYS BY AMINOU Faozyath UIL/PG2018/1866 JANUARY 2019.
MESURE DE RESULTATS DES IRR
les instructions Bonjour la classe, sortez vos affaires
1 Sensitivity Analysis Introduction to Sensitivity Analysis Introduction to Sensitivity Analysis Graphical Sensitivity Analysis Graphical Sensitivity Analysis.
Avoiding the Pitfalls of Bad Slides Tips to be Covered Outlines Slide Structure Fonts Colour Background Graphs Spelling and Grammar Conclusions Questions.
Les négatifs et l’interrogation
Les Mots Intérrogatifs
Les opinions Les opinions = Opinions. In this lesson pupils will learn to understand and give their own opinions about singular items.
L’orchestre des animaux
OFFRIR DES SOINS PALLIATIFS DANS LE MILIEU RURAL
Soutenance de thèse: Okba Taouali 1 02/08/2019 Fathia AZZOUZI, Adam BOURAS, Nizar JEBLI Conceptual specifications of a cooperative inter- machines dialogue.
Double Vision the art of seeing more than one thing
IMPROVING PF’s M&E APPROACH AND LEARNING STRATEGY Sylvain N’CHO M&E Manager IPA-Cote d’Ivoire.
M’SILA University Information Communication Sciences and technology
Transcription de la présentation:

Les agents pédagogiques Roger Nkambou

Exemple1: Tuteur émotionnel (Emilie 1) Développé au laboratoire GDAC de l’UQAM, Emilie est un agent qui produit une réponse affective chez un personnage en fonction des actions de l’usager. Il prend en compte: Les actions de l’apprenant La difficulté relative de la tâche Les action à accomplir

Tuteur émotionnel (Emilie 1) Les actions de l’usager sont suivies par l’agent observateur qui transmet des messages à Emilie. Ces messages contiennent le degré de difficulté et le niveau d’erreur (si il y a lieu) de chaque action. Observateur Emilie

Tuteur émotionnel (Emilie 1) Emilie produit donc des gestes, postures et des expressions faciales représentant les émotions simulées de l’agent. Observateur Emilie

Emilie1: Architecture fonctionnelle (1)

Emilie1: Architecture fonctionnelle (2) Couche du Modèle OCC Dépot de Statistiques Couche Moteur Générateur d’émotions Information Géométrique additionnelle Événements Plans Couche de génération d’émotions Couche d’interface

Génération d’émotion: exemple Exemple d’une règle qui induit l’émotion de soulagement dans le cas où l’apprenant réussit un problème difficile après plusieurs échecs

Exemple 2: Les agents cognitifs (Frasson et al) Cognitive agent (CA): Pedagogical Agent CA = Intelligent Agent Autonomy Social ability Reactivity Decision capabilities Propriétés propres aux CA Instructable Adaptive Cognitive Learn by experience +

Learning in intelligent tutoring systems (ITS) has evolved during the last two decades. The goal of an ITS was to reproduce the behavior of an intelligent (competent) human tutor who can adapt his teaching to the learning rhythm of the learner. Initially, the controlled by the tutor (prescriptive approach), More recent ITS consider a co-operative approach between the learner and the system which can simulate various partners, such as a co-learner [6], a learning companion [4]… But in 1 on 1, 1-to-1 interaction two fundamental characteristics: (1) learning in ITS is a constructive process involving several partners, (2) to improve it various learning strategies can be used such as one-on-one tutoring, learning with a co-learner [6], learning by teaching [12, 13], learning by disturbing [1]. ACTORS : a multi-agent architecture in which each learning strategy is supported by several agents. the learning by disturbing strategy works with three agents: the tutor who supervises the learning session, the troublemaker, a "particular" companion who can decide to give correct solutions or wrong information in order to check, and improve, learner's self-confidence, and the artificial learner which allows to synchronize human learner's activity with the two other agents. The capability for an agent to play different roles and the necessity to learn from the behaviour of the other agents will incline us to consider agents as ACTORS .

Exemple de mise en œuvre 1: Learning by Disturbing 3 ACTORS to strengthen the learner self-confidence The tutor submits a problem both to the learner and the troublemaker React-To-Answer control task attitude := Choose-An-Attitude if (attitude = be negative) then Mislead else if (attitude = be positive) then Get the learner's answer in the Common Data Area. Analyse the answer. if (right answer) then Approve else Give-Solution else if (attitude = be neutral) then Remain-Silent - First scenario - Second scenario t4. (Scene2: React-To-Answer t4. (Scene2: React-To-Answer (Choose-An-Attitude) (Choose-An-Attitude [Cancelled]) (Mislead (Improve-Decision) (Display-Answer))) (Choose-An-Attitude-New) (Approve))

TOSUM UP, Cognitive learning extends the familiar intelligent tutoring concept, into global scope: analyzing relationships between learners (one-to-one as many-to-many) and the unformatted native knowledge and aids, to target, locate, connect, navigate and extract acquired knowledge and chunks. -

Exemple de mise en œuvre 1: Système LANCIA INTERNET Web Mining Complementary Asynchronous Learning Explanations Chunks Explanations Base Moderator Base Goals Negotiating Negotiating Negotiating Agent Agent Agent Courseware Dialog Dialog Agent Dialog Agent Agent Agent LANCA (Learning Architecture with Networked Cognitive Agents) is a generic software architecture dedicated to web-users and based on the interaction between four autonomous agents written in Java ™ or JavaScript ™ and respectively named Pedagogical Agent, Dialog Agent, Negotiating Agent and Moderator Agent The Moderator Agent supervise the LANCA architecture as a unique process targeting two goals: - Knowledge apprenticeship improvement with cognitive agents extends the familiar tele-learning paradigm into powered scope: managing of multiple users of pedagogical resources - such as helps, tutors, strategies, chunks (as pieces of reasoning) or teaching documents ( HTML pages - …) and pedagogical agents, within a convivial framework for internet use in learning and training - Knowledge apprenticeship improvement with cognitive agents extends the familiar tele-learning paradigm into powered scope: managing of multiple users of pedagogical resources - such as helps, tutors, strategies, chunks (as pieces of reasoning) or teaching documents ( HTML pages – …) and pedagogical agents, within a convivial framework for internet use in learning and training The Pedagogical Agent improve plans, actions (performances) and results and carrying out these information and knowledge through querying and exchanging information with other software agents and the learner and the Dialog Agent provides intelligent access to a heterogeneous collection of information sources and knowledge within a Web courseware repository The negotiating agent The role of the negotiating agent is based on the principle that additional helps are required for the learner who can asks the companion or somebody else on the Web to discuss The negotiation holds two types of information: complementary explanations transmitted by the dialog agent · information on learner's profiles attached to each negotiating agent . Then the proposition and utility of help (profitability) can be discussed by all the negotiating agents with similar propositions in order to reach an agreement The open Services Agent Web functionality (Browsers, Spiders, Chat-rooms..) construct an index of the knowledge. to provide additional help and explanation Pedagogical Pedagogical Pedagogical Synchronous Learning Agent Agent Agent ITS ITS ITS process process process Learner Learner Learner

LANCA (Learning Architecture with Networked Cognitive Agents) Moderator Agent supervise le contrôle du système LANCA comme un processus unique Pedagogical Agent améliore les plans, les actions et le résultats et en informe d’autres agents ainsi que l’apprenantand Dialog Agent fourni l’accès aux sources d’information et de connaissances dans les repertoires web de cours Negotiating agent fourni une aide profonde et adaptée au profile de l’apprenant suite à une négociation avec les autres agents de même type. Open Services Agent (Browsers, Spiders, Chat-rooms..) construit un index de connaissances additionnelles nécessaires pour des fins d’aide et d’explications.

Exemple3: Peddy Peddy est un agent multi-usage développé par Microsoft. Il est facile à programmer et a des capacité de reconnaissance et de synthèse de la voix. Peut donc être utiliser pour en faire un agent pédagogique.

Exemple4: Steve Steve peut démontrer des habiletés à l’étudiant, répondre à ses questions, observer l’étudiant en situation d’exécution de tâches et lui donner des conseils en cas de difficultés. Steve a été développé par le Center for Advanced Research in Technology for Education de l’USC Information Sciences Institute.

Exemple5: Linda Linda est un guide d’apprentissage fruit d’un projet R&D de Extempo Systems pour des fins de commercialisation.

Exemple6: Adele Adele supporte les étudiants durant des exercices de résolution de problèmes. Aussi développé par le Center for Advanced Research in Technology for Education de l’USC Information Sciences Institute.

Exemple7: Einstein Un des premiers personages commercial permettant la communication en language naturel en réaction des requêtes de l’usager. Bon pour des séances pédagogique de type question-réponse.

Exemple8: Herman Herman est un agent d’aide à la résolution de problèmes développé dans le cadre du projet IntelliMedia à la North Carolina State University.

Exemple9: Cosmo Développé aussi dans la cadre du projet IntelliMedia Project pour expérimenter l’habileté d’un agent à combiner dynamiquement la gesture, la locomotion et la parole pour référer aux objets de l’environnement d’apprentissage au moment de l’aide à la résolution de problème. Agent aidant et encourageant, Cosmo peut expliquer comment les ordinateurs sont connectés dans le réseau, comment le routage est exécuté et comment le traffic des données s’effectue.