Information available in a capture history

Slides:



Advertisements
Présentations similaires
ÊTRE être ou ne pas être Cest la question! (That is the question!)
Advertisements

Smoking a regular verb cigar: the –er version The keys to putting together what you want to say!
Role-play C On the first page, you will see a sample of the preparation material you will be given 10 minutes before your exam. On the second page, you.
Mardi 20 Novembre 2012 Recap I can
Irregular Adjectives Not all adjectives are made the same.
DAY 21. Translate the following sentences: 1.Marie is funny and creative. 2.John is strong and nice. 3.Marc and John are timid but generous.
Making PowerPoint Slides Avoiding the Pitfalls of Bad Slides.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
Traffic Sign Recognition Jacob Carlson Sean St. Onge Advisor: Dr. Thomas L. Stewart.
 Components have ratings  Ratings can be Voltage, Current or Power (Volts, Amps or Watts  If a Current of Power rating is exceeded the component overheats.
IP Multicast Text available on
1MPES2 Multiply Polynomials
Infinitive There are 3 groups of REGULAR verbs in French: verbs ending with -ER = 1st group verbs ending with -IR = 2nd group verbs ending with -RE = 3rd.
The Passé Composé Tense
Speaking Exam Preparation
Leçon 6 I am what I am or to be or not to be
l y a which we have already learned means “there is/are l y a which we have already learned means “there is/are.” When we put a measure of time.
Être au pluriel Verbes: page 46.
Vendredi le 13 octobre.
Reflective verbs or Pronominal verbs
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
Les questions et les mots interrogatifs
ÊTRE To be (ou: n’être pas!).
Français I – Leçon 6A Structures
French 1st Level The Weather.
The Passé Composé Tense
Les Fruits :.
Conditional Clauses By Mª Mercedes Sánchez Year
Theme One Speaking Questions
Jeopardy Final Jeopardy Malade L’heure Vocabulaire PC/IMP $100 $100
There are so many types of sports. For example-: Basketball,volleyball, cricket, badminton, table tennis, football, lawn tennis etc.
© 2004 Prentice-Hall, Inc.Chap 4-1 Basic Business Statistics (9 th Edition) Chapter 4 Basic Probability.
POPULATION GROWTH IN AFRICA EXHIBITOR: Papa Abdoulaye Diouf.
1. Financial (Accounting) Statements  Financial or Accounting statements are used for reporting corporate activity. 2 For Stakeholders.
in French and in English
The Passé Composé Tense
G. Peter Zhang Neurocomputing 50 (2003) 159–175 link Time series forecasting using a hybrid ARIMA and neural network model Presented by Trent Goughnour.
Author : Moustapha ALADJI PhD student in economics-University of Guyana Co-author : Paul ROSELE Chim HDR Paris 1-Pantheon Sorbonne Economics / Management.
Lect12EEE 2021 Differential Equation Solutions of Transient Circuits Dr. Holbert March 3, 2008.
Essai
Distributed Radiation Detection Daniel Obenshain Arthur Rock SURF Fellow.
C’est quel numéro? Count the numbers with pupils.
Le soir Objectifs: Talking about what you do in the evening
Qu’est-ce que tu as dans ta trousse?
Bienvenue Au monde des Pronoms.
Nous allons apprendre…
Qu’est-ce que tu as dans ta trousse?
University graduates and unemployement job in Tunisia Faculté des sciences a Sfax Département Informatique et Télécommunication Élaboré par: Année Universitaire.
C’est quel numéro? Count the numbers with pupils.
Quelle est la date aujourd’hui?
The last grammatical concept
Question formation In English, you can change a statement into a question by adding a helping verb (auxiliary): does he sing? do we sing? did they sing.
MIGRATION IRREGULIERE Aperçu Le 13 août 2018
Making PowerPoint Slides Avoiding the Pitfalls of Bad Slides.
Le conditionnel « Would ».
The Passé Composé Tense
Les formes et les couleurs
Paul Eluard Dans Paris.
1 Sensitivity Analysis Introduction to Sensitivity Analysis Introduction to Sensitivity Analysis Graphical Sensitivity Analysis Graphical Sensitivity Analysis.
Avoiding the Pitfalls of Bad Slides Tips to be Covered Outlines Slide Structure Fonts Colour Background Graphs Spelling and Grammar Conclusions Questions.
Le Passé Composé (Perfect Tense)
Les Mots Intérrogatifs
Lequel The Last Part.
Les opinions Les opinions = Opinions. In this lesson pupils will learn to understand and give their own opinions about singular items.
C’est quel instrument?.
Les couleurs.
L’orchestre des animaux
Prepositions of Location
Double Vision the art of seeing more than one thing
Les Jours de la Semaine ©  Copyright Kapow! 2017.
Transcription de la présentation:

Information available in a capture history 001011001000 between the first and the last capture after the last capture before the first capture Three parts can be distinguished:

Survival estimation 001011001000 Using both middle and last parts, we can estimate: i, the probability that the animal survived from i to i+1

Incertitude dans la détermination des états Capture-Recapture Données : histoires de capture = codage des observations faites sur le terrain 1 2 0 2 1 0 2 Observations : États sous-jacents :  R  : reproducteur  NR  : non reproducteur  † : mort : pas vu : vu reproducteur : vu dans la colonie 1 2 Incertitude dans la détermination des états

États sous-jacents cachés Site, état physiologique... Modèle multi-événement : Chaîne de Markov cachée d’ordre 1 Observations Histoire de capture Ot-2 Ot-1 Ot Ot+1 Ot+2 St-2 St-1 St St+1 St+2 États sous-jacents cachés Site, état physiologique...

Paramètres du modèle † † † Probabilités d’observation : capture Survie-transition Probabilités de transition : Probabilités des états initiaux : † † †

Graphe orienté Multiévénement Ot-1 Ot Ot+1 événement observé .... Qt-1 réalité cachée Qt est l'état à l'instant t Ot est un événement qui n'est pas directement lié à un état, mais qui est plus probable pour certains états que pour d'autres (exemple, présence sur un nid)

Estimation du Succès de Reproduction Cumulé : utilisation de l’algorithme de Viterbi généralisé en CR

Utilisation de l’algorithme de Viterbi généralisé en CR Estimation du SRC : Utilisation de l’algorithme de Viterbi généralisé en CR 1 animal 1 histoire de capture Oi Algorithme de Viterbi généralisé S1 & P(S1 | Oi) S2 & P(S2 | Oi) SL & P(SL | Oi) … …

Sensibilité de l’estimation du SRC au nombre de séquences d’états considérés

Domaines des CR non reformulés dans le cadre des HMM ou des structures cachées

Looking backward 001011001000 , the seniority probability

Information available in a capture history 001011001000 Using the three parts together, we can estimate: i, the population growth rate between i and i+1!

A population point of view A = set of individuals present at both i and i+1 A Ni Ni+1 i, the survival probability, is also the proportion among the Ni that are still present at i+1 A = Ni i

A population point of view A = set of individuals present at both i and i+1 A A Ni Ni+1 i+1, the seniority probability, is also the proportion among the Ni+1 that were already present at i A = Ni+1 i+1

Population growth rate Thus, we have:  Ni+1 / Ni = i / i+1 A = Ni i = Ni+1 i+1 that is i = i / i+1

Derived quantities 1. Life expectancy 2. Stopover duration 3. Linear home range

1. Life expectancy If survival is constant If survival is constant If survival is time dependent

2. Stopover duration Exit = emigration Entry = immigration Life expectancy of « survival » analysis Sojourn after i « recruitment » analysis Sojourn before i Total stopover duration

3. Domaine vital Constitution des histoires de capture 1 … +

Différences concernant le type d’habitat utilisé. Mâles en période de reproduction Femelles en période de reproduction Individus en période de croissance

Canada Goose data: m-array The idea behind Test M The animals released at date 1 on site 1 and not recaptured at date 2 are then in an unknown location. either on site 1, 2 or 3. Hence, they are a mixture of animals behaving like those of rows (2,1), (2,2) or (2,3) If they are on site 3, they should behave like animals released on site 3 at date 2 14 101 158 8 47 48 7 16 18 1 14 11 If they are on site 2, they should behave like animals released on site 2 at date 2 159 869 15 63 335 10 41 164 3 18 74 2 If they are on site 1, they should behave like animals released on site 1 at date 2 491 134 0 149 71 3 51 42 3 21 13 0 36 18 0 13 6 0 6 5 1 5 2 0 1 785 239 53 0 36 18 0 13 6 0 6 5 1 5 2 0 401 2086 85 615 6 36 158 2 22 92 3 7 32 2 3 22 0 1001 623 24 49 67 11 30 18 3 10 10 0 8 3 2 5 3 380 2 2082 491 134 0 149 71 3 51 42 3 21 13 0 1104 3918 159 869 15 63 335 10 41 164 3 18 74 2 2165 1698 14 101 158 8 47 48 7 16 18 1 14 11 655 3 2666 ... 1 785 239 53 0 36 18 0 13 6 0 6 5 1 5 2 0 401 2086 85 615 6 36 158 2 22 92 3 7 32 2 3 22 0 1001 623 24 49 67 11 30 18 3 10 10 0 8 3 2 5 3 380 2 2082 491 134 0 149 71 3 51 42 3 21 13 0 1104 3918 159 869 15 63 335 10 41 164 3 18 74 2 2165 1698 14 101 158 8 47 48 7 16 18 1 14 11 655 3 2666 ... The second component is more tricky Canada Goose data: m-array No dependence on the current capture

Test M, a test of mixture Test M is unusual in that the first rows of the contingency tables do not play the same role as the last ones. They must be tested for being independent mixtures of the s (here 3) last rows. There is one component per occasion from date 2 to the last but 2 date (k-3). 36 18 0 13 6 0 6 5 1 5 2 0 36 158 2 22 92 3 7 32 2 3 2 1 11 30 18 3 10 10 0 8 3 2 5 3 491 134 0 149 71 3 51 42 3 21 13 0 159 869 15 63 335 10 41 164 3 18 74 2 14 101 158 8 47 48 7 16 18 1 14 11 mixtures bases First component of Test M for the Canada goose data

Le chantier

Modèles à effets individuels aléatoires Logit(φi)= αXi + wi (survie) logit(bi)= gXi + vi (reproduction) (vi, wi) ~ bivariate normal