la théorie autrichienne de la valeur-utilité Et l’utilité totale, l’utilité marginale
Carl Menger ( ), Autrichien « Principles of Economics », 1871 Processus économique : Approche scientifique analytique décomposition d’un phénomène complexe en plusieurs morceaux pour mieux l’appréhender Lacunes en mathématiques : approche psychologique étude de la structure institutionnelle de l'économie
Retour à la conception subjectiviste de l’utilité déjà formulée par Condillac, Turgot et Say : la valeur d’un bien est donnée par l’utilité qu’elle procure. Les prix des biens sont supposés proportionnels à leur utilité marginale. Retour sur l’exemple de Smith : le diamant est plus cher que l’eau non pas en raison de l’utilité qu’il procure mais du travail qu’il contient. L’eau est plus utile.
L’utilité marginale Utilité : Satisfaction associée à la consommation d’un bien 1 er bien de Consommation L’utilité décroit au fur et à mesure de l’utilisation du bien 1 er bien de Consommation L’utilité décroit au fur et à mesure de l’utilisation du bien 2 ème bien de Consommation Intervient pour maintenir à un niveau identique l’utilité 2 ème bien de Consommation Intervient pour maintenir à un niveau identique l’utilité Pour les marginalistes/néo-classiques, l’utilité marginale est la base de la valeur économique.
L’utilité marginale est le supplément d’utilité que procure une unité supplémentaire de bien consommé. Le coût marginal est le supplément de coût occasionné par une unité supplémentaire d’un bien acheté En principe, il y a décroissance de l’utilité procurée par un bien : plus on en consomme et moins il nous satisfait. Ce raisonnement peut s’appliquer au facteur travail embauché par l’entreprise.
Le raisonnement marginal présent chez Menger est illustré par le schéma suivant: Le raisonnement marginaliste
Le tableau se lit en colonnes et par unités successives. Au bien I, l’agent attribue une intensité 10 pour la première unité dont il a besoin. C’est la seule occurrence de 10, c’est donc pour obtenir une unité de ce bien que l’agent fera tous ses efforts plutôt que pour toute autre unité de tout autre bien. Une deuxième unité aura pour lui une importance moindre, mettons de 9. Alors, il existera un autre bien dont l’importance sera à ses yeux identique. Une fois une unité du bien I obtenue, il peut choisir entre une unité supplémentaire de I, ou une première unité du bien II. Ces deux options représentent pour lui la même utilité. C’est ainsi l’utilité de la dernière unité acquise d’un bien qui définit la valeur de ce bien aux yeux de l’agent. Cette unité se trouve « à la marge » de ses besoins, et la théorie est appelée « théorie de la valeur - utilité marginale » ou « théorie de l’utilité marginale »
Ainsi, si la première gorgée de bière procure un plaisir ineffable, la seconde est déjà moins bonne, et ainsi de suite, jusqu'à arriver au moment où l'envie se tarit. Cela signifie que l'utilité de chaque nouvelle gorgée de bière est inférieure à celle de la précédente : l'utilité marginale est décroissante. L'utilité marginale procurée par chaque dose supplémentaire d'un bien consommé va en diminuant et devient nulle à partir d'un certain seuil appelé "point de satiété". Au-delà de ce point, l'utilité marginale de doses supplémentaires peut devenir négative et se transformer en désutilité.
Utilité totale et utilité marginale
Definitions: Utilit é totale : L ’ utilit é totale U, d ’ un bien X quelconque, mesure la satisfaction globale que l ’ individu retire de la consommation de ce bien. Le niveau de U d é pend de la quantit é du bien X. Autrement dit, U est fonction de X, ce qui s ’é crit : U = U(X) Utilité marginale : L’utilité marginale, Um, mesure l’évolution de l’utilité totale « à la marge », c'est-à-dire pour une variation très petite de la quantité consommée.
On va alors distinguer deux types de bien : Les biens imparfaitement divisibles pour lesquels il existe une unit é de mesure en de çà de laquelle il est impossible de descendre (une voiture, une paire de lunette, … ). L ’ utilit é marginale d ’ un bien X imparfaitement divisible est alors la variation de l ’ utilit é totale induite par une unit é suppl é mentaire de ce bien. On note math é matiquement : Les biens parfaitement divisibles pour lesquels il existe é galement une unit é de mesure mais qu ’ il est toujours possible de r é duire (l ’ eau, le sel, … ). L ’ utilit é marginale d ’ un bien X parfaitement divisible est la variation de l ’ utilit é totale pour une variation infiniment petite de la quantit é consomm é e. On utilise alors le concept de d é riv é e pour l ’ exprimer math é matiquement :
Evolutions, principe de l’utilité marginale décroissante Principe d ’ intensit é d é croissante des besoins : L ’ intensit é d ’ un besoin est d é croissante au fur et à mesure que la quantit é consomm é e augmente. Exemple : Si un individu a soif, il a moins soif à partir du deuxi è me verre, encore moins soif à partir du troisi è me.
U X Um X Principe de l ’ utilit é marginale d é croissante : Si la satisfaction globale (utilit é totale) continu d ’ augmenter, l ’ intensit é du besoin (utilit é marginale) d é cro î t lors de la consommation, la satisfaction é prouv é e pour chaque unit é suppl é mentaire est donc moins importante que pour la pr é c é dente. Cela revient à dire que l ’ utilit é totale augmente de moins en moins vite. Au- del à d ’ un certain point, il se peut même que le niveau de satisfaction global diminue. L ’ utilit é marginale devient alors n é gative. Pour visualiser ce concept, il est judicieux de tracer graphiquement cette é volution :
Choix optimal du consommateur L’individu rationnel va chercher à maximiser son utilité. Son choix va donc dépendre du degré d’abondance des biens ainsi que de leur coût. On va distinguer plusieurs situations : La situation d’abondance où tous les biens sont largement disponible (situation malheureusement rare) et donc dans laquelle l’individu n’a pas à faire de sacrifice pour obtenir la quantité de bien souhaité. Il va chercher à avoir l’utilité totale maximum sur tous les biens : Equilibre à UmX = 0 La situation de rareté dans une économie de troc dans laquelle l’individu va devoir choisir entre différentes combinaisons de biens. Dans une économie de troc, les biens s’échangent directement entre eux, consommer un bien X c’est renoncer à consommer un bien Y ou Z. L’individu tient alors compte du coût d’opportunité de cette consommation, l’utilité qu’il aurait pu obtenir en renonçant à X : Equilibre à UmX = UmY La situation de rareté dans une économie monétaire est similaire à celle de l’économie de troc à ceci près que les biens ne s’échangent plus entre eux mais contre de la monnaie. Il y a alors le prix du bien qui va rentrer en compte : Equilibre à
Introduction aux courbes d’indifférence (Vilfredo Pareto) Y X Une courbe d’indifférence représente l’ensemble des combinaisons de deux biens qui procurent au consommateur un niveau d’utilité identique. On peut la représenter graphiquement comme ci-contre. On remarque qu’elle est décroissante ce qui s’explique par le fait que pour une ressource donnée, il n’est pas possible de faire augmenter la quantité de biens X sans faire baisser la quantité de biens Y. Sa forme convexe s’explique à l’aide du principe de l’utilité marginale décroissante.
Questions Définissez l’utilité marginale. Pourquoi l’utilité marginale d’un bien est-elle décroissante? Quelle est la différence entre une utilité totale et une utilité marginale? Soit un consommateur ayant une préférence pour les mélanges. Attribuez à cet agent une fonction d’utilité. Quelle sera l’utilité de ce consommateur s’il achète un panier de biens composé de 8 unités de bien 1 et de 1 unité de bien 2. Calculez : a) l’utilité totale; b) les utilités marginales.