MPRI - Bio-informatique formelle - LC Part 1 : Theory.

Slides:



Advertisements
Présentations similaires
Direct and Indirect Object Pronouns in French
Advertisements

2. 2 Linterrogation 1.The simplest and most common way to ask a question in French is by using intonation, that is, by simply raising ones voice at the.
Fractions impropres et nombres fractionnaires
Les pronoms compléments
Questions about people Use Qui - either as subject or object. Qui est allé au cinéma? Avec qui est Jacques allé au cinéma? Qui is the subject of the verb.

Practical Session – Defining Learning Outcomes
THALES Communications Les informations contenues dans ce document sont la propriété exclusive du Groupe THALES. Elles ne doivent pas être divulguées sans.
Organisme S. Pombe S. cerevisiae Vertébrés
Le pronom en Some or any. Notice the use of en in the responses. 1. Tu fais du jogging. Oui, jen fais. 2. Vous avez fait de la gymnastique? Oui, nous.
2 Linterrogation La norme: Communication 1.2 –Understanding the spoken and written language Les questions essentielles: -How many ways are there to ask.
How to say 'the' Definite article:. In English, you only have one definite article, and it is THE Le Musée de la Musique La Place de la Bastille.
Talking about your House How to say where things are, what they are like, and to whom they belong.
Lire et écrire les valeurs de positions décimales Objectif.
TROUVER LES FACTEURS PREMIERS
Limparfait. For all verbs except être, -cer & -ger verbs, use the present tense nous form & drop the –ons to form the stem & add the following endings:
Revenir aux basiques !. 1 Revenir aux basiques Processus Nécessité daméliorer la Maîtrise les Offres et Projets: lanalyse des causes racines montre un.
Questions II How do you Form Questions in French??
Questions WHAT????. Quick review: we know how to make a sentence negative: Je vais ----> Je ne vais pas Personne ne va Rien ne va (theoretically)
LES BONNES MANIERES (GOOD MANNERS). GREETINGS AND INTRODUCTIONS In the French-speaking world, different greetings reflect differing degrees of familiarity.
La formation des questions Reflect a bit… Reflect a bit… Pourquoi est-il important de poser les questions? Pourquoi est-il important de poser les questions?
La formation des questions Reflect a bit… Reflect a bit… Pourquoi est-il important de poser les questions? Pourquoi est-il important de poser les questions?
Time with minutes French II Le 30 Octobre.
Cliquez et modifiez le titre Cliquez pour modifier les styles du texte du masque Deuxième niveau Troisième niveau Quatrième niveau Cinquième niveau 1 Regulation.
Status report SOLEIL April 2008
Delagnes 15/10/07 1 Resist Meeting Saclay 15/10/07 E. Delagnes.
5 Contractions Les normes: Communication 1.1 – Understanding the spoken and written language Comparisons 4.1 – Understanding the nature of language through.
Reading an analog clock
Université Des Sciences Et De La Technologie DOran Mohamed Boudiaf USTO République Algérienne Démocratique et Populaire Département de linformatique Projet.
What does en mean? The object pronoun en usually means some or of them.
Le Téléphone 1 Âllo! Tante Claudia? 2. Société Lamar, j'écoute 3. Je voudrais parler à 4. C'est de la part de qui? 5. Je vais appeler chez elle 6 Ne quittez.
Y and en Two little words with a lot of meaning. y.
The interrogative structure indicates that the speaker is searching for information In other words, we use the interrogative to ask questions.
Objectif de lAtelier de Reconstruction Rebuilding Workshop Objective WestmountVille-Marie 25 mars March 2012 Lobjectif de latelier est de formuler.
Les pluriels Sometimes you cant just take one!. Les articles… There are « DEUX » articles that can show that something is plural. Les = the Les ciseaux,
Quelle heure est-il? What time is it?.
How to solve biological problems with math Mars 2012.
AFNOR NF Z – "Online Consumer Reviews
LOB: How can we distinguish the present, past and future tenses? LOUT: To have identified examples of the present, perfect and future tenses from Alexandre.
Bienvenue à la classe de français!
Les choses que j aime Learning Objective: To know how to use j aime to talk about things I like to do.
Techniques de leau et calcul des réseaux séance 2a Michel Verbanck 2012.
Laboratoire de Bioinformatique des Génomes et des Réseaux Université Libre de Bruxelles, Belgique Introduction Statistics.
L’ensemble microcanonique
??????????????????????? QUESTION WORDS Pensez!!! What words do we use in English to ask information questions???? Who What? When? Where? Why? How? How.
Passage entre quaternions et matrice des cosinus directeurs Transition from Quaternions to Direction Cosine Matrices.
Finger Rhyme 6 Summer Term Module 6 Culturethèque-ifru2013 May not be copied for commercial purposes.
CLS algorithm Step 1: If all instances in C are positive, then create YES node and halt. If all instances in C are negative, create a NO node and halt.
La cellule de Langerhans
Donnez l’heure “Time”… it’s a ticking!.
Français II H – Leçon 1B Structures
Différencier: NOMBRE PREMIER vs. NOMBRE COMPOSÉ
Modifications of working conditions in the host states Report on the AT Board held on 18 April 2000 New minimum wages in Switzerland Impact of the 35-hour.
Leçon 4: L’heure Mlle Muhr French 1. The Hour There are 60 minutes in every hour. Each hour can be divided into 4 parts: 15/60 or 1/
Quelle heure est-il? What time is it ?.
Formatting of Game © Candace R. Black, Al rights reserved. Révisions!
Responsible products via large retail chains in the EU: field reality and development needs Vincent Commenne For the European Network for Responsible.
Orbitales “s” Figure:
ANSWERS. What is Verb Conjugation? For one thing, conjugating a verb is simply putting a verb in an orderly arrangement. We will use a chart. To create.
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
Laboratoire des outils informatiques pour la conception et la production en mécanique (LICP) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 1 Petri nets for.
Anitha sivaganesh foyer 140
Salut, les copains! French 1, Chapter 1-1.
Le Chatelier's Principle Lesson 2. Le Chatelier’s Principle If a system in equilibrium is subjected to a change processes occur that oppose the imposed.
Negative sentences Questions
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
An Introduction To Two – Port Networks The University of Tennessee Electrical and Computer Engineering Knoxville, TN wlg.
Roots of a Polynomial: Root of a polynomial is the value of the independent variable at which the polynomial intersects the horizontal axis (the function.
1 Sensitivity Analysis Introduction to Sensitivity Analysis Introduction to Sensitivity Analysis Graphical Sensitivity Analysis Graphical Sensitivity Analysis.
Lequel The Last Part.
Transcription de la présentation:

MPRI - Bio-informatique formelle - LC Part 1 : Theory

MPRI - Bio-informatique formelle - LC Standard laws of biochemical kinetics applied to molecular networks

MPRI - Bio-informatique formelle - LC XiXa kaka Rate of Mass Action: forward reaction Biocham model: present(Xi). absent(Xa). ka*[Xi] for Xi=>Xa. parameter(ka,0.2).

MPRI - Bio-informatique formelle - LC Xa XiXa kaka Steady State solution Rate of Mass Action: forward reaction

MPRI - Bio-informatique formelle - LC Xi Xa kaka kiki Rate of Mass Action: reversible reaction Biocham model: present(Xi). absent(Xa). ka*[Xi] for Xi=>Xa. ki*[Xa] for Xa=>Xi. parameter(ka,0.2). parameter(ki,0.1).

MPRI - Bio-informatique formelle - LC Xa Xa* Steady State solution Xi Xa kaka kiki Rate of Mass Action: reversible reaction

MPRI - Bio-informatique formelle - LC production + elimination - Xa Xa* Xa Xa* Rate of Mass Action: reversible reaction rate

MPRI - Bio-informatique formelle - LC B Xa Rate of Mass Action: catalyzed reversible reaction Xi Xa kaka kiki production + elimination - rate

MPRI - Bio-informatique formelle - LC Xa* B Nullcline B Xa Xi Xa kaka kiki production + elimination - rate

MPRI - Bio-informatique formelle - LC Xi Xa kaka Michaelis-Menten: forward reaction Biocham model: present(Xi). absent(Xa). ka*[Xi]/(Ja+[Xi]) for Xi=>Xa. parameter(ka,0.2). parameter(Ja,0.05).

MPRI - Bio-informatique formelle - LC Xi Xa kaka Steady State solution Xa Michaelis-Menten: forward reaction

MPRI - Bio-informatique formelle - LC Xi Xa kaka Michaelis-Menten: reverse reaction Biocham model: present(Xi). absent(Xa). ka*[Xi]/(Ja+[Xi]) for Xi=>Xa. ki*[Xa]/(Ji+[Xa]) for Xa=>Xi. parameter(ka,0.2). parameter(ki,0.1). parameter(Ja,0.05). parameter(Ji,0.05). kiki Goldbeter-Koshland switch

MPRI - Bio-informatique formelle - LC Xa* production + elimination - Michaelis-Menten: reversible reaction rate Xi Xa kaka kiki

MPRI - Bio-informatique formelle - LC Xa* rate Michaelis-Menten: catalyzed reversible reaction B Xi Xa kaka kiki production + elimination -

MPRI - Bio-informatique formelle - LC Xa* rate Xa* [B] Nullcline B Xi Xa kaka kiki production + elimination -

MPRI - Bio-informatique formelle - LC 0 CycB* APC APC* CycB APC Assume Cdc28 always present and in excess Cln2 Cdc20 Positive feedback 0.5

MPRI - Bio-informatique formelle - LC CycB Saddle Node bifurcation Change of parameter R (function of Cln2 and Cdc20) APC CycB APC CycB Saddle Node bifurcation point Saddle Node bifurcation point X Y

MPRI - Bio-informatique formelle - LC X Y C A N N O T O S C I L L A T E Negative feedback

MPRI - Bio-informatique formelle - LC Y X Z Ytot-Y Y k ci k ca Xtot-XX k ai k aa Ztot-Z Z k ba k bi Negative feedback

MPRI - Bio-informatique formelle - LC X Y Z Y X Z The third element introduces a delay that allows the system to oscillate. Negative feedback can create an oscillatory regime

MPRI - Bio-informatique formelle - LC The importance of choosing the right parameters Choose different values for the parameter kaa (activation of X) if kaa=0.015 if kaa=0.1 if kaa=0.2 Z X Y X Y Z

MPRI - Bio-informatique formelle - LC kaa : activation of X Activity of X region of oscillations stable steady state Hopf bifurcation points HB 1. Choose a parameter: kaa 2. Vary its value. different solutions can be observed according to its value 3. The system oscillates between kaa=0.022 and kaa= At the point of bifurcation HB, the stable steady state changed into an unstable steady state and oscillations were created. 5. The points surrounding the unstable steady states show the amplitude of the oscillations. Hopf bifurcation Change of parameter kaa (activation of X)

MPRI - Bio-informatique formelle - LC Introduction to bifurcation theory 1. Saddle Node (SN) bifurcation 2. Hopf (H) bifurcation 3. SNIC bifurcation : when SN meets H 4. Numerical Bifurcation theory 5. Signature of bifurcations

MPRI - Bio-informatique formelle - LC Bifurcation : Qualitative change in dynamics of the solutions of a system Bifurcation point : Border line between two behaviours of solutions Basic Definitions

MPRI - Bio-informatique formelle - LC 1. Saddle Node bifurcation r < 0, 2 solutions one stable, one unstable r = 0, 1 solution semi-stable r > 0, 0 solution x xxx Bifurcation diagram xx x r => Vary the parameter, r

MPRI - Bio-informatique formelle - LC 2. Hopf bifurcation center x y Bifurcation diagram x p g(x,y)=0 f(x,y)=0 stable focus (solutions converge to the steady state in a spiral) x y g(x,y)=0 f(x,y)=0 unstable focus (solutions diverge from the steady state) + stable limit cycle (solutions converge to the cycle) x y g(x,y)=0 f(x,y)=0 Let p be a parameter of g(x,y) => vary p. Supercritical Hopf bifurcation

MPRI - Bio-informatique formelle - LC 3. Saddle Node on Invariant Circles (SNIC) or when a saddle node meets oscillations Combine cases 1 (Saddle Node) and 2 (Hopf) parameter p Positive feedbackNegative feedback When decreasing p, oscillations die at a saddle node bifurcation When increasing p, oscillations are created from a saddle node bifurcation

MPRI - Bio-informatique formelle - LC 4. Numerical bifurcation theory How to solve numerically a system of n ODEs : the case of n=2 1. Consider the following system of ODEs: 2. Solve at the equilibrium and determine the fixed points: 3. Determine the stability of the fixed points by computing the Jacobian A at these values (Jacobian is the matrix of the partial derivatives of the functions with respect to the components computed at the fixed points)

MPRI - Bio-informatique formelle - LC 5. The eigenvalues can inform on the stability of the fixed points 4. Compute the characteristic equation in terms of the eigenvalues λ and where the equation is determined as follows: The solution of the equation is the following:

MPRI - Bio-informatique formelle - LC

5. Signature of bifurcations

MPRI - Bio-informatique formelle - LC Continuation of a saddle node in one-parameter – One parameter bifurcation graph Example of a system of 2 ODEs 2 equations, 3 unknowns. Fix p=p* and solve for the steady state (x 1, x 2 ). We seek an equation of x (either 1 or 2) in terms of p. That way, we can follow a steady state as a parameter changes.

MPRI - Bio-informatique formelle - LC For the case of the saddle node bifurcation, the following graph is obtained : p x1x1 p1p1

MPRI - Bio-informatique formelle - LC Part 2 : application to biology

MPRI - Bio-informatique formelle - LC Quelques faits - 13 cycles rapides et synchronisés juste après fécondation - Alternance entre les phases S et M (sans G1 ni G2) noyaux partagent le même cytoplasme - Le niveau total des cyclines noscille quaprès le cycle 8 ou 9 - En interphase du cycle 14, arrêt en G2 Quelques questions - Pourquoi ne voit-on pas le niveau des cyclines osciller plus tôt puisquil y a division nucléaire ? - Pourquoi les cycles sarrêtent-ils au 14e cycle ?

MPRI - Bio-informatique formelle - LC Données expérimentales et simulation CycBT Stg/Cdc25 MPFb Edgar et al. (1994) Genes and Development

MPRI - Bio-informatique formelle - LC Pourquoi ne voit-on pas le niveau des cyclines osciller plus tôt puisquil y a division nucléaire ?

MPRI - Bio-informatique formelle - LC Un modèle simple du Xenope CycB/Cdk1 = MPF CycB/Cdk1-P = preMPF Wee1 Cdc25P Fzy/APC IEP Cdk1 CycB P Fzy/APC IE Cdc25 Wee1P Cdk1 CycB MPF Wee1 Cdc25P IEP Fzy P P

MPRI - Bio-informatique formelle - LC Dun modèle de Xenopus … Wee1 Cdk1/CycB FZY Cdc25 CycB/Cdk1 = MPF CycB/Cdk1-P = preMPF Wee1 Cdc25P Fzy/APC IEP Cdk1 CycB P Fzy/APC IE Cdc25 Wee1P Cdk1 CycB

MPRI - Bio-informatique formelle - LC … à un modèle de Drosophila CycB/Cdk1 = MPF CycB/Cdk1-P = preMPF Wee1 Cdc25P Fzy/APC IEP Cdk1 CycB P Fzy/APC IE Cdc25 Wee1P Cdk1 CycB Le noyau CycB/Cdk1 = MPF CycB/Cdk1-P = preMPF Wee1 Cdc25P Cdk1 CycB P Cdc25 Wee1P Cdk1 CycB Le cytoplasme

MPRI - Bio-informatique formelle - LC 1 Des compartiments différents Cdk1/CycB FZY 234

MPRI - Bio-informatique formelle - LC Des compartiments différents Wee1 c Stg c CycB/Cdk1 = MPF CycB/Cdk1-P = preMPF Wee1 n Stg n Cdk1 CycB n IEP Fzy Cytoplasm Nucleus Cdk1 CycB n P Cdk1 CycB c Cdk1 CycB n P Fzy Wee1 n MPF n Stg n /Cdc25 Stg c /Cdc25 MPF c Wee1 c CycB T Cytoplasm Nucleus

MPRI - Bio-informatique formelle - LC Pourquoi les cycles sarrêtent-ils au 14e cycle ?

MPRI - Bio-informatique formelle - LC String/Cdc25, facteur limitant (1) Son ARN : -Stable pendant 13 cycles -Dégradation abrupte Le niveau total de la protéine : - est faible au début - augmente pendant les 8 premiers cycles - est dégradé graduellement jusquau 14eme cycle Son degré de Phosphorylation : oscille a partir du 5eme cycle

MPRI - Bio-informatique formelle - LC String/Cdc25, facteur limitant (2) Traitement alpha-amanitin : 14 cycles MPFT MPFb Xm Stgm Xp Treatment at t=55 min Treatment at t=70 min

MPRI - Bio-informatique formelle - LC Diagramme de bifurcation: MPF n et CycB T en fonction du nombre de cycles StgT=1StgT=0 Cycles MPF n CycB T

MPRI - Bio-informatique formelle - LC Ce que la théorie de la bifurcation nous permet de conclure : => String est responsable de lendroit où se trouve le saddle node (feedback positif) Si on réduit la valeur de String, le saddle node va bouger. => Si on élimine le feedback négatif, on perd les oscillations (dans le cytoplasme, il ny a pas de feedback negatif).