du génome aux protéomes « in silico » Bioinformatique Marie-Claude.Blatter@isb-sib.ch Institut Suisse de Bioinformatique Groupe Swiss-Prot novembre 2004
La bioinformatique, c’est quoi ? L’utilisation de l’informatique pour l’analyse de l’ADN et des protéines de tous les êtres vivants.
Acquérir puis stocker les informations biologiques sous la forme d’encyclopédies appelées bases de données; Développer des programmes de prédiction et d’analyse en utilisant les informations contenues dans les bases de données; Analyser/Interpréter/Prédire: utiliser ces programmes pour analyser de ‘nouvelles’ données biologiques et prédire in silico par exemple la fonction potentielle d’une protéine; Visualiser: développer des programmes pour visualiser la structure en trois dimensions des protéines et de l’ADN, pour shématiser des voies métaboliques ou des arbres phylogénétiques.
Bioinformatique - application 1: acquisition de données Exemples: lecture d’images de gels 2D, spectrométrie de masse (MS), séquençage ADN... Détection de signaux ou d’images Absence de contexte biologique.
Informatique instrumentale Séquençage d’ADN Informatique instrumentale Programme pour analyser les données d’un séquenceur ADN Exemple: pregap4 de Rodger Staden https://sourceforge.net/projects/staden.
Bioinformatique - application 2: Assemblage des séquences d’ADN Nature 409, 860-921 (2001) Les méthodes actuelles de séquençage ne permettent pas d’obtenir des séquences fiables de plus de 1000 bp !
Bioinformatique - application 2: Assemblage des séquences d’ADN -> Reconstruire la séquence complète d’un génome ou d’un morceau de chromosome (« contig ») à partir de séquences de 1000 bp; Pas du tout trivial parce que: (a) il y a des erreurs de séquence; (b) il y a des régions répétitives. Chromosome Y trop de répétition: impossible de séquencer plusieurs individus (différences repeat polymorphismes) “Celera-generated shotgun data set consisted of 27 million sequencing reads …” Whole-genome shotgun assembly and comparison of human genome assemblies. PNAS 101(7):1916-21 (2004)
2.7 milliards de $ (coût en 2000) CCCCTGACGACCGATTCAAAAACCACTTTCCTCTTTTACGGCGCCCTAGCGCTATGGCGGTGAAGACTGCTTGACATTAACATGCCTGTTGAGGCTAGAGAATCCATGCGAAGGCGGTTCGGAAACTGCTTCGAAGGCGTGGGGTGGTGCGGGGGGTGGGATTTGAACCCACGCAGGCCTACGCCATCGGGTCCTAAGCCCGACCCCTTTGGCCAGGCTCGGGCACCCCCGCACCGTGTAGTCTTTAGGTTTAGCTTTCAGGGTTAAAACGGTTTAACACTCATGAGTATCACTGGGCTGGCTGTGACTGGGCTCTGCATTCCCGAGGCCATGCTGCCCGTGAGGAATAACGGGTCTGAGGAGCCGTTGACAGGTTGCCATTTGGCCTTGCCCCCAAAAGTGATGCTGTGGATCACGACCTCCTCGGAGGAGGGGAGCCTCAGCATACACTTTATAATGAAGGCTTTAAGGGTTTAGCCGGATAATGTTGTTGGGGCGTGCAGCGGCAAGTGCTGCAGCTCATGGGTATGGTATGCGGCTTTGCCTGGTGATGCGGTTTGGCCCCCGTTGTCTGCGACGTCTGCGGTGTTAGGAGGGCTGTGGTGCTGCAGCGCCACACGGGAAGGCGGCTCTGCAGGGAGTGCTTTAGGGAGGATATAGTGGGGAGGGTCAGGAGGGAGGTTGAGAGGTGGGGGATGATAGGCCCTGGGGAGACGGTCCTCCTAGGCCTGAGCGGCGGTAAGGACAGCTATGTCCTGCTGGACGCCCTCTCCGAGATAGTCGGGCCCTCGAGGCTGGTGGCGGTGTCTATAGTGGAGGGCATACCGGGGTACAACAGGGAGGGAGATATCGAGAAGATCAGGAGGGTGGCCGCGGCTAGGGGCGTCGACGTGATAGTGACGAGCATAAGGGAGTACGTGGGGGCCAGCCTCTATGAGATATACTCCAGGGCCCGAGGGAGGGGGGCGGGCCACGCCGCCTGCACCTACTGCGGCATAAGCAGGAGGAGGATACTTGCCCTCTACGCCCGCCTCTACGGCGCCCACAAGGTCGCTACGGCCCACAACCTCGACGACGAGGCGCAGACAGCTATAGTGAACTTCCTCAGGGGGGACTGGGTTGGCATGCTGAAAACACACCCCCTCTACAGGAGCGGGGGCGAGGACCTGGTTCCAAGGATAAAGCCTCTTAGGAAAGTCTACGAGTGGGAGACGGCCAGCTACGTGGTACTCCACCGCTACCCCATCCAGGAGGCTGAATGCCCCTTCATAAACATGAACCCAACCCTCAGGGCGAGGGTGAGGACGGCCCTGAGGGTGCTAGAGGAGAGGAGCCCGGGCACCCTGCTCAGGATGATGGAGAGGCTCGACGAGGAGCTGAGGCCGCTGGCCCAGGCCATGAAGCCCTCCTCCCTAGGCAGGTGCGAGAGATGCGGGGAGCCGACCAGCCCGAAGAGGAGGCTCTGCAAGCTCTGCGAGCTCCTGGAGGAGGCCGGGTTCCAGGAGCCCATCTACGCGATCGCAGGGAGAGGCAAGAGATTAAGGCTTCAGAGCCCCACCGCTAGCCCTGGGTGAACGCGCTATGGCAAAGCCAAAGGTTAGCCTGCCGGAGGATGTGGAGCCCCCCAAGGCTATAGTCAAGAAGCCTAGGCTAGTGAAGCTAGGCCCCGTAGACCCGGGGGTCAGGAGGGGAAGGGGGTTCAGCCTAGGCGAGCTCGCGGAGGCTGGGCTAGACGCTAAAAAGGCGAGGAAGCTTGGCCTGCACGTGGACACGAGGAGGAGGACGGTCCACCCGTGGAACGTGGAGGCCCTCAAGAAGTATATAGAGAGGCTTAGAGAGGCGGGCGTAGAGGTCTAGACCCCGGGGCTATATACTACCACTTCGCCCTCCCCATTATACTATCCACATCCACCCTGGCCCTCCCCACCTCCAGGACCTCAATATCCCCCTCAGCCCTGGTGTACACGCTCAAAGACGGCTCCCTGTAGGAGGCCCTGGTCACCACCCCCACGTGAATCACCCCTCCCGCGTGTACGGCGGCTATAAGCCCCCTCTCCCAGCCCTCCCGGAGGACGCGGAGCCCGGAGCCTACTCCGACCCTACCGCCCCTCCTCGCCACAACCACTATGTCCCCGTCAACACTCTCACCATAGAGGGCGGCTGGGTGTAGGGCCTTGAGGGCCTCGTGGGCCAGAGGCTCCCCCCGGAATATCGGCGCGCCAACTATCTCGGCCTCGCCGGGCCTGACCCTCCTCTCCCTCCCTCCCGAGGTCCTAAGGGCTATCAGCCTCTCCCTATGAAGAGCCCTCTCCCCCCGGCTCTTGCCCGCCTCTCCAGCCAGCCTCTCCACAGACAGAGTGTCAAGCCCCCACACCCTCTCGAGCAGCCTGGCCCGTCGGCTGGCTATGCCCACCGCGACTACAAGCCTTGCTCTAGAGGCTATGGCGAGGGCTGCCTTAGACTCGAGCCCCTCCCACAGTGATATCCAGCCATCTGTATCCACTACCACCTGGCTGGCCAGTGAGGCCAATCTAGATGCGCAGGCGAGGTAGCGGGACTCCGACCCCCGGGGGGTGAAGCCGCCGACGAAACACGGCTCGACACTCGAGAACGAGTCGTCTAGGCCCGGGACGGCCACGCCCTGTGGAGACGCCAGCGCCATAAACCCCGGGGCGAAGACCTCGTTCTGGCCTATATCCGCCGACAGCAGTCTATACCCACCACCGCCCCTGTTAACTATCCAAGCCGCTAGTGTGCTCTTACCGGAGTCGCTCGGCCCCACAATAGCCACCCTGCCCCGCTGAGAGGCCTCCCTGGCTATGGAGTCGAACCTGTTGTAAGCCTCCTCCACGCCCCCTGTGGAGACTACACCGGACACAATAGCCCTCCCCTCAACCCTGGCGAGCACCGACCTGCCTGCAGGGACCACTAGAGTAGAGCCCTCCCCCAGCCTTCCACCCAAAACCTCTGCAGCACCCTCTACAACCTCTATCCTCCCCGGGCCGCGGACTAGCGCCGAGCCCCATGCAATCTCCACAGGCAAAGCTTTAAACCCCCAGTGGTAAGATATGTGAACCGGGCCGCGGTAGTATAGCCTGGACTAGTATGCGGGCCTGTCAAGGGCCCCGCCTCCGCCCCACCCTCATTCTACTACACGCTTATCAGGATAAACAGCCGGGCAAACGTTTTTAACCCCGCCGAAATTCATACTCTTCCCGGGGCGGAGGCGGGCCTGCGGAGAGCCCGTGACCCGGGTTCAAATCCCGGCCGCGGCGCCAATAATCCTCGCGGCCCGCCTTCAAGACTCACTAAACCCCGGTTGAGCACCCGCAGCATCGATGCTAAGGCTCGAGCCATGCATAGTGCCCGCGGGGGGTGGGGGGATTTGGCGAGGCCTGTTGAGGCGGTAAAGAGGCTGCTGGAGAGGTGGCTGGAGGGTAGGAGGAGGGGTTATGTCCTTACGCTTGTAGCTCTTAGAAGGCTTGAGGAGAGGGGGGAGGAGGCTACTGTAGAGAGGGTTAGGGAGGAGGGCCTGAGGATTCTGGAGAGGACGGAGGGGAGGATAGACTGGGGTGTTACTAGGGATGAGTACACTGTCAACATGGTCTCCAGCGTTCTTCGCGAGCTGGCCGAGAGCGGCCTTGTCGAGATGGTGGACGGCGGGAGGAGTATCGTCAGGTACAGGATAGCGAGGGATGCTGAGGAGGAGTTCCTCTCCAGCTTCGGCCACCTCCTGCAGCTTGTGAGGATGCCGAAGTAGCGTTAAAGCCCTAGGTGCCAGAGGCCGCCGGAGGCTAAGAGGCCGATGAAGGCCTTGAGAGGCTCTGCCGCCAAGCTATCCCTATCCCTGCTGCTCTTTTGGGCTAGCTACTCGATCTACTACACTATAACGAGGCGTGCTGTAGAGGAGGGCCTAGGAGAGGGATCCTACCTCCTGGGCGTCTTGATGTCGGGGGCTGAGGAGGCGCCGCTCGCGGCGTCAATAGTCCTTGGCTACCTGGCGGACAGGCTAGGCTACCGCTTACCCCTGGCCCTGGGCCTGTTTGAGGCTGGGCTGGTCGCTGCAATGGCCTTCACCCCCCTAGAGACCTACCCCATACTGGCTGGGGCTGCGTCGCTAGTCTACGCCCTCTCATACTCCGCCCTAATGGGCCTCGTCCTGGGTGAGAGCGGGGGGAGCGGCTTCAGGTACAGTGTTATAGCAGCCTTCGGCAGCCTTGGCTGGGCTCTCGGCGGGTTGGCGGGGGGAGCGGCTTACTCCCGCCTGGGGTCACTGGGGCTCCTAGTGGCCGCAGCCCTCATGGCCGCCTCATACCTAGTCGCCCTCTCAGCCTCGCCCCCCCGCGGCGGCGCGGCGCCCAGTGTGGGGGAGACGATAACCGCTCTGAAGGGGGTTCTGCCCCTATTTGCAAGCCTCTCAACCAGCTGGGCGGCCTTGGGCTTCTTCTTCGGGGCTGCCAGCATAAGGCTTAGCGAGGCGCTCGAGAGCCCTATCGCCTACGGGCTAGTGCTGACCACCGTCCCCGCACTCCTAGGCTTCCTGGCGAGGCCTGCGGCGGGCAGGCTGGTCGACAAGGCCGGGGCTGTGGCAGTGCTTGCGTTGTCCAACGCGGCATACTCCCTTCTCGCCCTAGTTTTCGGCCTGCCCACCAGTCCGGCCCTGCTGGCCCTTGCATGGAGCCTGCCCCTATACCCCTTTAGGGATGCCGCCGCGGCCATCGCAGTTAGCAGCAGGCTTGAGAGGAGGCTGCAGGCGACGGCCGCGGGGCTGCTCTCAGCGAGCGAGAGCGTCGGCGGCGCTGCAACCCTTGCCCTGGCACTGCTCCTGGATGGGGGGTTTAGGGAGATGATGACGGCTTCAATAGCCCTTATGCTCCTCTCCACCCTACTCCTGGCCGCAGACCACTCTACGGCTCCACGCCGAGAGCCCTGTCCCCGGCGTCGCCAAGGCCCGGCACTATGAAGTAGTTCTCGTCCAGCTCGGGGTCTAGGGCTAGCGTGTATATGGGGGTGTCGCCGTAGAGGGATGATATGTACTCGACGCCCTGCCTGGACGCTATTATAGAGCCTATAACGACCTTGCTGGCCCCCCTGTCTCTGGCCAGCCTCACGGCCTCCGCCACAGTCTTGCCCGTGGCCAGCATCGGGTCTAGAACGACGGCGGGGCCGTCGAACATGCGGGGTAGCCTGGAGTAGTAGACCTCTATCTTGAGCCTGCCCGGCTCCTCGACCCTCCTGGCTGCTACGAGGGCTATCCTCGCCTCCGGCATCATCGAGGCGAAACCCTCTACCATGGGGAGGCTAGCCCCGAGTATCCCTACGAGGTAGACGGGCCCCGCTGGCGCCAGCTCCTTGGCCTTAGCCCCCAGGGGGGTCTCCACCTCCTCCTCCACCCACCCGAGCTCGCCCGCAATGTACACCGCCAGTATGGAGCCCGCTATCCTGACGTACCTCCTAAACTCCGGGAACCCGGTTGTCCGGTCCCTGAGAACCTTGAGGACGTAGCGCGCTAGGGGTGTTTCGCCCCCAATAACCCTAACTGCCGCCACCATGGGAACCTCTAGGTAGTGGTTGAGGCTCCGGAGCTTAAGAGGGTTAAACTCCAGGATGGCCACCTGGGTGCCGCCGGGGATTGGACAGTAGGGTTCTAGAGTCCGCGTTGAGAGCCCTATCCCGCTACCCCCTCTGCGACCGCTGCCTCGGCAGGCTCTTCGCTAGGCTTGGGAGAGGCTGGAGCAATAGGGAGCGGGGAGAGGCTGTCAAGAGGGTTCTGGTGATGGAGCTTCACAGGAGGGTCCTCGAGGGGGATGAGGCGGCGTTGAAAACCCTGGTCTCTGCAGCTCCGAACATAGGGGAGGTGGCAAGGGATGTCGTGGAGCACCTCTCCCCAGGTTCCTACAGGGAGGGCGGCCCATGCGCTGTCTGCGGCGGGCGGCTGGAGAGTGTTATAGCCTCAGCGGTGGAGGAGGGGTACAGGCTGCTAAGGGCTTACGATATCGAGAGGTTCGTAGTCGGGGTCCGGCTAGAGAGAGGTGTTGCCATGGCTGAGGAGGAGGTAAAGCTGGCCGCCGGCGCCGGGTACGGCGAGTCCATTAAGGCTGAGATCAGGAGGGAGGTGGGCAAGCTCCTGGTGAGCCGGGGTGGAGTGACCGTGGACTTCGACAGCCCTGAAGCGACCCTAATGGTGGAGTTCCCCGGGGGCGGGGTTGACATACAGGTCAACAGCCTGCTCTACAAGGCTAGGTACTGGAAGCTTGCCAGGAACATAAGCCAGGCATACTGGCCCACGCCAGAGGGGCCGAGGTACTTCAGCGTGGAGCAGGCTCTATGGCCGGTTCTAAAGCTCACTGGGGGGGAGAGGCTGGTTGTACACGCTGCTGGCAGGGAGGATGTAGACGCCAGGATGCTGGGCAGCGGGAGGCCCATGATAGTCGAGGTCAAGTCGCCTAGGCGCAGGAGGATCCCGCTTGAGGAGCTGGAGGCGGCCGCCAACGCCGGCGGGAAGGGGCTGGTTAGGTTCAGGTTCGAGACGGCTGCCAAGCGTGCCGAGGTCGCGCTTTACAAGGAGGAGACTGCGAGGGTTAGGAAGGTGTACCGCGCCCTGGTAGCGGTGGAGGGTGGTGTTAGTGAGGTGGATGTTGAAGGGTTGAGGAGGGCTCTCGAGGGCGCGGTTATAATGCAGAGGACGCCCTCCAGGGTCCTCCATAGGAGGCCGGATATACTGAGGAGGCGGAGGCTCTACAGCCTAGACTGCAGCCCCCTGGAGGGGGCGCCTCTGATGGAGTGCATATTGGAGGCGGAAGGGGGTCTCTACATCAAGGAGCTGGTCAGCGGTGATGGCGGGAGAACCAGGCCAAGCTTCGCTGAGGTCCTCGGCAGGGAGGCTGTGTGTATAGAGCTCGACGTGGTGTGGGTGGAGCATGAAGCTCCAGCCGCACCCGGCTAAAGCTAAATTAAGCTGGGCTGAGCAAAATACCGGGGGGAGCGTAGGTTGGTCAAGGCACCTAGAGGCTATAGGAACAGGACTAGGAGGCTGTTGAGGAAGCCTGTGAGGGAGAAGGGCAGCATACCCAGGCTCAGCACCTACCTTAGGGAGTACAGGGTGGGCGATAAGGTGGCTATAATCATAAACCCCTCCTTCCCAGACTGGGGCATGCCCCACAGGAGGTTCCACGGGCTGACGGGAACCGTGGTGGGGAAGAGGGGCGAGGCCTACGAGGTAGAGGTCTATCTGGGTAGGAAGAGGAAGACCCTCTTCGTCCCCCCCGTGCACCTCAAACCCCTCAGCACAGCCGCCGAGAGGCGGGGCAGCTAGAGCTGTCCCCACGGTTCCACGCTGGAGTAGGGGGTGCTAGTGTTGGAGAGGAGGATCCTAGAGTATAAGGCGGTGCCCTACCAGGTAGCCAAGAAGTATATGTACGAGAGGGTTAGGGAGGGCGACATAATATCGATACAGGAGTCGACTTGGGAGTACTTCAGGAAGGTAGTGTTCTGGGACGACCCGGAGGCTGCCTCCGAGCTTGTTGAGGAGATTGTGAAGGAGGGTGTCAGCCGTGAGGCGCGGCGAACATCGCGAGCATATGCCCCAAGACCGAGGGCGAGCTCAGGAGCATTCTCGAGATGGACAGGAGCATAACCTCCGTACACGAGATGGCTAGCAAACTGTACCCCATAGTTTCCAAATACTGCAAGGACTAGACCCCGCCCCCCTTCAGCCCGGGGATTAACAGTTTAATCTCCGCGTCCCAACCATATTTATGTTGATAGCGGCTGTACGGAGAGTGTTGAGAAGTGTCTAGACAGCCCCGCCCCCGCGACAGGAAGCCCCCCCACCAGGGGAGGCCGCAGCCCCACATCGCCGCCCTTGAGGTGGAGGCTATAGTTCTGGACTACATACCCGAGGGCTACCCGAGAGACCCCCACAGGGAGCACCGCAGTAAGCCCGTCGTTCAGGGTCTCGGGGTTAGGAGGCTGCACCTAGTCGACGGTGTCCCCCTCCATGAGGTCGATATACTGGAGCGGGTCACCCTGGCTAGGGAGGTTGTGTATAGCGTCCCCATAGTGGCCCGGCTCCCCGGGGGGGTCGAGAGGAGGGTGAAAAGTGTTACCGTCGCGGTAACATGCCTCCCCGGCCAGGCGCGGGAGGGCGGGGTCAGGGAGATATACTGCTACCCCCTCTCCTACGCCGACCAGGCGACCCTGGAGGCGCTGCAGCAGCTCCTGGGTGAGGGGGACGAGAGGCACAGGTATATACTTGTGGACTCCCCCGACAAGCTCTCCGAGGTGGCCAGAGGTCACGGCCTCTCGGGGAAGATAGTGAGCACGCCCAGAGACCCTATATCCTACCAGGACCTCACCGACGTCGCCAGGGCTACGCTGCCGGACGCTGTGAGGAAGCTGGTCAGGGAGAGGGAGGACTTCTTCGTGGAGTTCTTCAACGTGGCCGAGCCGATAAACATAAGGATACACGCGCTGGAGGCCCTAAAGGGTGTGGGTAAGAAGATGGCTAGGCACCTCCTCCTCGAGAGGGAGAGGCGTAGGTTCACGAGTTTCGAGGAGGTGAAGAAGATTCTGAAGATAGACCCCGCAGAGGCCCTGGCCGAGAAGATAATGGAGGAGATAGAGTGTAGGGACACTGTGAAATACTACTTCTTCGTCGAGCCCTGCGACCCCTCCAAGCCCTACCTAGGCTACACGGAGAGGATGTGGAAGGCCTATGCC Génome humain 3.2 milliards de pb 2.7 milliards de $ (coût en 2000) 100 $ (coût en 2008 ?)
Le génome humain (3ème version) contient actuellement encore 341 « trous » (essentiellement vers les centromères/télomères, régions répétitives) Nature (oct 2004), 431, 931
Contenu des banques de données de séquences en acides nucléiques EMBL/GenBank/DDBJ http://www.ebi.ac.uk/embl/index.html Octobre 2004 Craig Venter Ex: mer des Sargasses 1 milliard pb/semaine http://www3.ebi.ac.uk/Services/DBStats/
constamment remis à jour ! Tous ces sites sont constamment remis à jour ! http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi http://www.ncbi.nlm.nih.gov/Genomes/index.html
Bioinformatique - application 3: Analyse de séquence ADN Détection des régions codantes; Recherche de similarité (BLAST) Analyse des sites de restriction (enzymes); Traduction ADN en protéine; Détection de régions de basse complexité; Détection de séquences « repeats » comme les microsatellites, minisatellites, Alu repeats, etc.; Détection de régions ADN importantes non-codantes comme les signaux de transcription (promoteur), origines de la réplication, etc.; Détection de séquences de tARN et autres types de ARN (exemples: rARN, uARN, tmARN).
Détection des régions codantes (gènes) Problème assez facile chez les bactéries; très difficile chez les eucaryotes “supérieurs” (homme, drosophile, etc.); Chez l’homme: moins de 5 % du gènome est « codant » (transcrit en mARN). Techniques diverses: recherche de signaux, approches statistiques (biais des codons); similarité avec des séquences connues….
Recherche de « signaux » dans une petite partie du promoteur Premiers exons TATA box GC et CAT box Région régulatrices Recherche de « signaux » dans une petite partie du promoteur d’une protéine (apo AII)
Une séquence ADN de C.elegans) (~25’000 bp) …
Approche 1: Genebuilder http://l25.itba.mi.cnr.it/~webgene/genebuilder.html
Schéma récapitulatif 5 ’ 3 ’ Genebuilder prédiction 2 3 1 4 exons 1 2 1083 1003 1305 1406 1452 1661 1914 1997 2 3 1 4 5 ’ 3 ’ exons 1 2 3 4 ADN génomique Splicing / Epissage « in silico » 1 2 3 4 mARN mature EST => cDNA
Bioinformatique - application 3: Analyse de séquence ADN Détection des régions codantes; Recherche de similarité (BLAST) Analyse des sites de restriction (enzymes); Traduction ADN en protéine; Détection de régions de basse complexité; Détection de séquences « repeats » comme les microsatellites, minisatellites, Alu repeats, etc.; Détection de régions ADN importantes non-codantes comme les signaux de transcription (promoteur), origines de la réplication, etc.; Détection de séquences de tARN et autres types de ARN (exemples: rARN, uARN, tmARN).
Qu’est-ce qu’un BLAST ? Qu’est-ce que les ESTs ? Approche 2: Aligner la séquence génomique avec des mARNs (BLAST contre ESTs) Qu’est-ce qu’un BLAST ? Outil informatique très efficace, permettant de faire des recherche de similarité à partir d'une séquence (protéine ou nucléique) sur les séquences existantes (banques de données) Qu’est-ce que les ESTs ? “Expressed sequence tags” : cDNAs (mARNs) qui ont été rapidement séquencés, souvent incomplets. -> Très utiles pour connaître les régions génomiques “actives” (transcrites) et la structure des gènes. (~24 mo de séquences “publiques”; 6 mo (homme))
http://www.ncbi.nlm.nih.gov/BLAST/
Approche 2: Aligner la séquence génomique avec des mARNs (BLAST contre ESTs) Intron ?
Mature mARN (-> EST) exons 1 2 3 4 gDNA Splicing 1 2 3 4 Mature mARN (-> EST) EST => cDNA
Séquence codante de notre « gène » 1083 1003 1305 1406 1452 1661 1914 1997 2 3 1 4 Séquence codante de notre « gène » (sans les introns = correspondant au mARN)
Bioinformatique - application 3: Analyse de séquence ADN Détection des régions codantes; Recherche de similarité (BLASTN) Analyse des sites de restriction (enzymes); Traduction ADN en protéine; Détection de régions de basse complexité; Détection de séquences « repeats » comme les microsatellites, minisatellites, Alu repeats, etc.; Détection de régions ADN importantes non-codantes comme les signaux de transcription (promoteur), origines de la réplication, etc.; Détection de séquences de tARN et autres types de ARN (exemples: rARN, uARN, tmARN).
Les 3 phases de lecture…
Traduction avec « traduction multiple » http://www. infobiogen Met Stop
Recherche de similarité (contre les séquences de protéines déjà connues: BLAST)
Conclusion de l’analyse La séquence de la protéine est MKVETCVYSGYKIHPGHGKRLVRTDGKVQIFLSGKALKGAKLRRNPRDIR WTVLHRIKNKKGTHGQEQVTRKKTKKSVQVVNRAVAGLSLDAILAKRNQT EDFRRQQREQAAKIAKDANKAVRAAKAAANKEKKASQPKTQQKTAKNVKT AAPRVGGKR Bonne prédiction par tous les logiciels, bons ESTs Notre gène inconnu est en fait déjà connu: il code pour une protéine ribosomale de type L24.
Des cas moins idéaux… Ex: Chromosome 21
Combien de protéines humaines ? Banques de données de séquences de protéines: (Swiss-Prot + TrEMBL = UniProt) 11’415 + 44’860 22’000 Estimation du nombre de gènes humains: 20’000-25’000 MS proteomics has verified more than 10% of human genes products, but has not identified significant numbers of unpredicted proteins (Southan C, Proteomics, 2004) En cours: « peptide mapping » du génome, R. Aebersold, 21 % protéines humaines « vérifiées »….
-> ~ 1’200’000 protéines (estimation) http://www.expasy.org/sprot/
C’est pas fini…
Bioinformatique- application 4: analyse de la séquence primaire des protéines Caractérisation physicochimique Prédiction de la localisation subcellulaire (“signal séquences”, “transit peptides”); Recherche de régions transmembranaires; Recherche des régions fonctionnelles (domaines conservés) Recherche de sites de modifications post-traductionelles (PTM). Recherche de régions antigéniques; Recherche de régions dont la composition est biaisée (“low complexity sequences”);
http://www.expasy.org/
Séquence d’une protéine « inconnue » de C.elegans >seq4 MSTNNYQTLSQNKADRMGPGGSRRPRNSQHATASTPSASSCKEQQKDVEH EFDIIAYKTTFWRTFFFYALSFGTCGIFRLFLHWFPKRLIQFRGKRCSVE NADLVLVVDNHNRYDICNVYYRNKSGTDHTVVANTDGNLAELDELRWFKY RKLQYTWIDGEWSTPSRAYSHVTPENLASSAPTTGLKADDVALRRTYFGP NVMPVKLSPFYELVYKEVLSPFYIFQAISVTVWYIDDYVWYAALIIVMSL YSVIMTLRQTRSQQRRLQSMVVEHDEVQVIRENGRVLTLDSSEIVPGDVL VIPPQGCMMYCDAVLLNGTCIVNESMLTGESIPITKSAISDDGHEKIFSI DKHGKNIIFNGTKVLQTKYYKGQNVKALVIRTAYSTTKGQLIRAIMYPKP ADFKFFRELMKFIGVLAIVAFFGFMYTSFILFYRGSSIGKIIIRALDLVT IVVPPALPAVMGIGIFYAQRRLRQKSIYCISPTTINTCGAIDVVCFDKTG TLTEDGLDFYALRVVNDAKIGDNIVQIAANDSCQNVVRAIATCHTLSKIN NELHGDPLDVIMFEQTGYSLEEDDSESHESIESIQPILIRPPKDSSLPDC QIVKQFTFSSGLQRQSVIVTEEDSMKAYCKGSPEMIMSLCRPETVPENFH DIVEEYSQHGYRLIAVAEKELVVGSEVQKTPRQSIECDLTLIGLVALENR LKPVTTEVIQKLNEANIRSVMVTGDNLLTALSVARECGIIVPNKSAYLIE HENGVVDRRGRTVLTIREKEDHHTERQPKIVDLTKMTNKDCQFAISGSTF SVVTHEYPDLLDQLVLVCNVFARMAPEQKQLLVEHLQDVGQTVAMCGDGA NDCAALKAAHAGISLSEAEASIAAPFTSKVADIRCVITLISEGRAALVTS YSAFLCMAGYSLTQFISILLLYWIATSYSQMQFLFIDIAIVTNLAFLSSK TRAHKELASTPPPTSILSTASMVSLFGQLAIGGMAQVAVFCLITMQSWFI PFMPTHHDNDEDRKSLQGTAIFYVSLFHYIVLYFVFAAGPPYRASIASNK AFLISMIGVTVTCIAIVVFYVTPIQYFLGCLQMPQEFRFIILAVATVTAV ISIIYDRCVDWISERLREKIRQRRKGA
Bioinformatique- application 4: analyse de la séquence primaire des protéines Caractérisation physicochimique Prédiction de la localisation subcellulaire (“signal séquences”, “transit peptides”); Recherche de régions transmembranaires; Recherche des régions fonctionnelles (domaines conservés) Recherche de sites de modifications post-traductionelles (PTM). Recherche de régions antigéniques; Recherche de régions dont la composition est biaisée (“low complexity sequences”);
Déterminer les caractéristiques physico-chimiques http://www.expasy.org/tools/protparam.html
Bioinformatique- application 4: analyse de la séquence primaire des protéines Caractérisation physicochimique Prédiction de la localisation subcellulaire (“signal séquences”, “transit peptides”); Recherche de régions transmembranaires; Recherche des régions fonctionnelles (domaines conservés) Recherche de sites de modifications post-traductionelles (PTM). Recherche de régions antigéniques; Recherche de régions dont la composition est biaisée (“low complexity sequences”);
Localisation subcellulaire ? PSORT II
Bioinformatique- application 4: analyse de la séquence primaire des protéines Caractérisation physicochimique Prédiction de la localisation subcellulaire (“signal séquences”, “transit peptides”); Recherche de régions transmembranaires (TM); Recherche des régions fonctionnelles (domaines conservés) Recherche de sites de modifications post-traductionelles (PTM). Recherche de régions antigéniques; Recherche de régions dont la composition est biaisée (“low complexity sequences”);
Résumé des différents résultats obtenus par différents programmes de prédiction de TM grande boucle HMMTOP 1 in 1130 PSORT II 1 1130 TMpred 1 in 1130 TMHMM 1 out 1130
Bioinformatique- application 4: analyse de la séquence primaire des protéines Caractérisation physicochimique Prédiction de la localisation subcellulaire (“signal séquences”, “transit peptides”); Recherche de régions transmembranaires; Recherche des régions fonctionnelles (domaines conservés) Recherche de sites de modifications post-traductionelles (PTM). Recherche de régions antigéniques; Recherche de régions dont la composition est biaisée (“low complexity sequences”);
http://www.expasy.org/prosite/
Recherche des régions fonctionnelles Il s’agit probablement d’une ATPase
Bioinformatique- application 4: analyse de la séquence primaire des protéines Caractérisation physicochimique Prédiction de la localisation subcellulaire (“signal séquences”, “transit peptides”); Recherche de régions transmembranaires; Recherche des régions fonctionnelles (domaines conservés) Recherche de sites de modifications post-traductionelles (PTM). Recherche de régions antigéniques; Recherche de régions dont la composition est biaisée (“low complexity sequences”);
Prédiction des sites de phosphorylation http://www.cbs.dtu.dk/services/NetPhos/ Sequence 484 ISPTTINTC 0.065 . Sequence 487 TTINTCGAI 0.029 . Sequence 499 CFDKTGTLT 0.077 . Sequence 501 DKTGTLTED 0.845 *T* Sequence 503 TGTLTEDGL 0.533 *T* Prédiction des sites de phosphorylation (Importance des données expérimentales !)
Sulfatation Sulfinator Glycosylation
Ça me semble biologique …mais reste à le prouver ! Conclucion de l’analyse in silico de notre protéine inconnue Poids moléculaire: 126 kD; Fonction: ATPase potentielle; Localisation subcellulaire: Membrane plasmique. Transmembranaire (~10 hélices); N terminal: intracellulaire; C terminal: intracellulaire) PTM: Phosphorylée Ça me semble biologique …mais reste à le prouver !
Bioinformatique - application 5: alignement de 2 séquences Mettre en relation 2 séquences en comparant les acides aminés à chaque position et en tenant compte de leur probabilité de mutation au cours de l’évolution; MY-TAIL--ORIS-RICH- #x #### x#x# #### MONTAILLEURESTRICHE (algorithme pour comparer des chants d’oiseaux)
BLAST
« la pierre angulaire de la bioinformatique » BLAST « la pierre angulaire de la bioinformatique »
Bioinformatique - application 6: Alignement multiple Exemples: Clustal W, T-coffee tr|Q9N323 LVLVCNVFARMAPEQKQLLVEHLQDVGQTVAMCGDGANDCAALKAAHAGISLSEAEASIA sp|Q21286|YBF7_CAEEL ITAMCDVYARMAPDQKAQLIGALQEIGAKVSMCGDGANDCAALKAAHAGISLSQAEASIA sp|Q9H7F0|ATY3_HUMAN LMLHGTVFARMAPDQKTQLIEALQNVDYFVGMCGDGANDCGALKRAHGGISLSELEASVA sp|Q9NQ11|ATY1_HUMAN VLVQGTVFARMAPEQKTELVCELQKLQYCVGMCGDGANDCGALKAADVGISLSQAEASVV sp|O74431|ATC9_SCHPO ILLKAQIFARMSPSEKNELVSCFQNLNYCVGFCGDGANDCGALKAADVGISLSEAEASVA sp|Q12697|ATC9_YEAST ILLNSSIYARMSPDEKHELMIQLQKLDYTVGFCGDGANDCGALKAADVGISLSEAEASVA : ::***:*.:* *: :*.: *.:********.*** *. *****: ***:.
Alignement multiple et dendogramme Exemple d’un dendrogramme obtenu à partir d’un résultat de CLUSTALW à l’aide du programme « phylodendron » http://www.es.embnet.org/Doc/phylodendron/treeprint-form.html
Bioinformatique - application 7: phylogénétique Reconstruction de l’évolution moléculaire des familles de protéines; Reconstruction de l’évolution des espèces; création d’arbres taxonomique; Reconstruction de l’évolution des chemins métaboliques.
Computational Challenges from the Tree of Life The biology community has embarked on an enormously ambitious project, the assembly of the Tree of Life -- the phylogeny of all organisms on this planet. This project presents a true computational grand challenge: - current phylogenetic methods can barely handle a few hundred organisms. yet the Tree of Life has an estimated 10-100 million organisms. November 8, 17:15, EPFL INM 202 Bernard Moret University of New Mexico Albuquerque, USA
Bioinformatique - application 8 analyse de la structure secondaire & modélisation des protéines MSTNNYQTLSQNKADRMGPGGSRRPRNSQHATASTPSASSCKEQQKDVEH EFDIIAYKTTFWRTFFFYALSFGTCGIFRLFLHWFPKRLIQFRGKRCSVE NADLVLVVDNHNRYDICNVYYRNKSGTDHTVVANTDGNLAELDELRWFKY RKLQYTWIDGEWSTPSRAYSHVTPENLASSAPTTGLKADDVALRRTYFGP NVMPVKLSPFYELVYKEVLSPFYIFQAISVTVWYIDDYVWYAALIIVMSL YSVIMTLRQTRSQQRRLQSMVVEHDEVQVIRENGRVLTLDSSEIVPGDVL VIPPQGCMMYCDAVLLNGTCIVNESMLTGESIPITKSAISDDGHEKIFSI DKHGKNIIFNGTKVLQTKYYKGQNVKALVIRTAYSTTKGQLIRAIMYPKP ADFKFFRELMKFIGVLAIVAFFGFMYTSFILFYRGSSIGKIIIRALDLVT IVVPPALPAVMGIGIFYAQRRLRQKSIYCISPTTINTCGAIDVVCFDKTG TLTEDGLDFYALRVVNDAKIGDNIVQIAANDSCQNVVRAIATCHTLSKIN NELHGDPLDVIMFEQTGYSLEEDDSESHESIESIQPILIRPPKDSSLPDC ? Structure d’une protéine Séquence d’une protéine
Bioinformatique - application 8 analyse de la structure secondaire & tertiaire des protéines Détermination de la structure tertiaire à partir de la séquence (“ab-initio”); problème non-résolu ! Prédiction de la structure secondaire (hélices…) Modélisation par homologie: prédire la structure d’une nouvelle protéine ressemblant à une dont la structure est déjà connue; en plein développement… Programme de visualisation pour la structure 3D Prédiction de “docking” entre protéines ou entre une protéine et une petite molécule (« drug design »)
Exemple de données de cristallographie aux rayons X Coordonnées atomiques - données expérimentales CRYST1 42.700 41.700 73.000 90.00 104.60 90.00 P 21 2 12CA 82 ORIGX1 1.000000 0.000000 0.000000 0.00000 12CA 83 ORIGX2 0.000000 1.000000 0.000000 0.00000 12CA 84 ORIGX3 0.000000 0.000000 1.000000 0.00000 12CA 85 SCALE1 0.023419 0.000000 0.006100 0.00000 12CA 86 SCALE2 0.000000 0.023981 0.000000 0.00000 12CA 87 SCALE3 0.000000 0.000000 0.014156 0.00000 12CA 88 ATOM 1 N TRP 5 8.519 -0.751 10.738 1.00 13.37 12CA 89 ATOM 2 CA TRP 5 7.743 -1.668 11.585 1.00 13.42 12CA 90 ATOM 3 C TRP 5 6.786 -2.502 10.667 1.00 13.47 12CA 91 ATOM 4 O TRP 5 6.422 -2.085 9.607 1.00 13.57 12CA 92 ATOM 5 CB TRP 5 6.997 -0.917 12.645 1.00 13.34 12CA 93 ATOM 6 CG TRP 5 5.784 -0.209 12.221 1.00 13.40 12CA 94 ATOM 7 CD1 TRP 5 5.681 1.084 11.797 1.00 13.29 12CA 95 ATOM 8 CD2 TRP 5 4.417 -0.667 12.221 1.00 13.34 12CA 96 ATOM 9 NE1 TRP 5 4.388 1.418 11.515 1.00 13.30 12CA 97 ATOM 10 CE2 TRP 5 3.588 0.375 11.797 1.00 13.35 12CA 98 ATOM 11 CE3 TRP 5 3.837 -1.877 12.645 1.00 13.39 12CA 99 ATOM 12 CZ2 TRP 5 2.216 0.208 11.656 1.00 13.39 12CA 100 ATOM 13 CZ3 TRP 5 2.465 -2.043 12.504 1.00 13.33 12CA 101 ATOM 14 CH2 TRP 5 1.654 -1.001 12.009 1.00 13.34 12CA 102 ……. http://www.rcsb.org/pdb/
Programme de visualisation de la structure tridimentionnelle (Chime, Rasmol, PDB viewer…) Interaction entre un facteur de transcription (dimère) et l’ADN
C’est beau…mais y a du boulot !
HIV: exemple d’application de la bioinformatique 1984: identification du virus; 1985: séquençage du génome de HIV-1 ; (4 laboratoires dont Montagnier/France et Gallo (USA) (??)) 1985-1989: caractérisation des protéines; 1989: structure X-ray de la protéase; 1990: premiers inhibiteurs modélisés à partir de la structure 3D de la protéase Novembre 1995: premier médicament (Invirase) approuvé par la FDA (trithérapie).
Structure 3D de la protease de HIV
Structure 3D de la protease de HIV + inhibiteur
Conclusions Extraordinaire potentiel de la bioinformatique… mais ne elle ne remplace(ra) pas les expériences «wet lab» génomiques, protéomiques et autres, ni l’esprit critique humain (contexte biologique) ! La bioinfo fournit des outils performants aux chercheurs… Les données expérimentales des chercheurs permettent d’améliorer les programmes bioinformatiques (prédiction)…
Avant … Après …
CPTIC 288 Explorer les génomes en classe Si vous êtes intéressés: CPTIC 288 Explorer les génomes en classe 26 novembre 2004 http://www.webpalette.ch/dyn/4207.htm Acquérir une vue d'ensemble des potentiels “éducatifs” des bases de données (issues du séquençage du génome humain notamment) http://tecfa.unige.ch/%7elombardf/projets/odyssee-genomes/
La taille des génomes (en nombre de bases) Viroide 300 Petit phage (virus infectant une bactérie) 2,000 Virus du SIDA 10,000 Virus de l’herpès 150,000 Mycoplasma genitalium (bactérie parasite) 600,000 Bactérie 1 à 13 millions Levure du boulanger 13 millions Drosophile (mouche) 180 millions Poisson fugu 360 millions Homme 3.2 milliards Pin 68 milliards Salamandre 81 milliards Amibe 670 milliards