Les prévisions et la gestion de la demande

Slides:



Advertisements
Présentations similaires
La demande globale : La prévision des ventes
Advertisements

Approche traditionnelle: la méthode des coûts complets
Yacine DIAGNE GUEYE ENDA ENERGIE
Objectifs d’apprentissage
Sciences et technologies de gestion
Introduction aux opérations
Introduction aux opérations
Growing, Growing, Gone: Cascades, Diffusion, and Turning Points in the Product Life Cycle Peter N. Golder Gerard J. Tellis Présenté par Audrey Hamel &
MANAGER LES RESSOURCES HUMAINES
Fondamentaux de marketing et de communication Henry R. Acquaviva
La prévision de la demande
Bonjour ! Souriez c’est lundi !
Marketing : comprendre le client
Prévisions des ventes :
Introduction aux opérations
MRP, MRP II, ERP : Finalités et particularités de chacun.
Prévision de la Demande
LA SEGMENTATION STRATÉGIQUE
Marketing Engineering
1 Séance 6. 2 Précisions sur le travail de session Référence: – Pages 7 et 8 du syllabus –Volume de Gibbins p Document principal: 15 pages (effort.
Le Reengineering.
CHAPITRE 5 : La demande Définition de la demande : La demande comprend l’ensemble des acheteurs d’un produit Il existe deux types de demandes : Demande.
L Le marketing 1 LE MARKETING
Manuel de formation PNUEThème 13 Diapo 1 Objectifs de lÉtude dImpact Social (ÉIS) : F analyser la façon dont des propositions affectent les personnes F.
Présenté par M. Hijri Noureddine
Chaîne logistique : - Approvisionnement - Stocks
Intégration prévision/planification (thèse en cours, ) Evaluation de modèles de prévision de demandes en termes des impacts sur le coût logistique.
LA CONCEPTION ET L ’AMÉLIORATIOND’UN SYSTÈME DE PRODUCTION
La formation des ressources humaines
Prévisions météorologiques, projections climatiques : que peut- on prévoir et avec quelle fiabilité ? Exercice 2: estimation de la prévisibilité dans le.
Les standards et le contrôle budgétaire Chapitre 13
La macroéconomie étudie les agrégats économiques (PIB, PNB, inflation, chômage, consommation, investissement, etc). La microéconomie étudie : - le comportement.
LA PLANIFICATION ET LE CONTRÔLE DES OPÉRATIONS
Analyse de marchés Lutilisation de la donnée secondaire dans lanalyse du produit/marché SÉANCE 8.
L ’ENTREPRISE EN ACTION
L’impact des TI sur la chaîne d’approvisionnement
Modèles de décisions financières
Marketing Electronique Cours 2
RECHERCHE COMMERCIALE
Alain Noël M.B.A., Ph.D., F.Adm.A. bureau 3.278a, , A. Noël Ph.D.MBA HEC, simulation Netstrat, séance 3 1 Gérer une entreprise.
Les prévisions et la gestion de la demande
Cours de création d’entreprise assuré par : Mariem Ben Abid
SEMINAIRE DE CONTACT novembre 2008 Outils de gestion de projet.
AITF Le rôle de l’ingénieur territorial dans l’évolution des modes de gestion  Paris, 4 octobre 2013.
La formation des ressources humaines
L’économie de concurrence parfaite
Aménagement écosystémique et économie, où en sommes-nous réellement ? Le 27 novembre 2014 Présenté par Mélissa Lainesse.
LA POSE D’UN DIAGNOSTIC Jm bouthors - Consultant
La vente en gros et ses particularités Document préparé par Monique Vaillancourt en introduction du cours de Commercialisation de la mode au gros MV.
Dans le cadre de ce module, nous examinons les principaux éléments du processus de planification financière. Nous évaluons les objectifs et les avantages.
Le marketing : Cours d’introduction
Notions de coûts et prise de décision
1 Séance M-5 et H-4 Entreprise en action A - La gestion de l’équipe de vente (GEV): cinq catégories de tâches et de décisions B - Le point de vue de la.
ANALYSE DE MARCHÉS BAA Robert Landry, mba
1 Séance M-5 Entreprise en action A- La vente B- La gestion de l’équipe de vente Robert Desormeaux.
Gestion budgétaire des ventes
Le Marketing Par: Daniela Folea.
La production de biens et de services
Le marketing : comprendre le client
Le marketing : comprendre le client
Soyer les Bien venue.
La politique de prix Une définition du concept
La gestion des stocks (Modèle de Wilson).
1 Séance M-2 L’entreprise en action Robert Desormeaux.
Bienvenue!  Professeur : Dr. David Beaudoin.  Disponibilité : Mardi 15h30-17h local  Disponibilité d’Antoine Gautier: Mardi et Jeudi à compter.
L’entreprise et sa gestion
« LA PERFORMANCE DOIT ÊTRE GÉRÉE… ». 2 GÉRER / MESURER ? GÉRER LA PERFORMANCE DES PERSONNES, C’EST BEAUCOUP PLUS QUE LA MESURER. Partager.
Institut Technologique FCBA : Forêt, Cellulose, Bois - construction, Ameublement Regards croisés sur les valeurs de la forêt FCBA : Alain Thivolle-Cazat,
La gestion de la demande
Transcription de la présentation:

Les prévisions et la gestion de la demande BAA 2-115-97 Les prévisions et la gestion de la demande Séance 11a Les techniques de lissage © 2004, Robert Landry & Bianca Cloutier – HEC Montréal

« Je confesse qu’en 1901, j’ai dit à mon frère Orville que l’homme ne volerait pas avant 50 ans… Depuis, je n’ai plus jamais osé faire de prévisions... » Wilbur Wright, 1908 Cité de : The Book of Predictions, par David Wallechinsky et al. (Morrow, 1980)

La nature de la prévision et de la gestion de la demande Une bonne gestion et la prise de décision adéquates nécessitent la connaissance des demandes à satisfaire. La demande n’est pas toujours connue à l’avance.

La nature de la prévision et de la gestion de la demande Pour prévoir la demande, il faut utiliser des méthodes qui sont caractérisés par : Un traitement du futur sur un horizon de temps déterminé. Des éléments d’incertitudes Des tendances passées De l’analyse des données connues ou historiques Des facteurs pouvant l’influencer ( une description de ce qui se passera…) Elle doit être faite à court ou moyen terme seulement. Des facteurs pouvant l’influencer ( une description de ce qui se passera…)-

Ces méthodes de prévision sont : Une description de ce qui se passera compte tenu d’un ensemble de décisions et d’évènements passés dans une situation donnée. Un « intrant » considérable dans le processus de planification stratégique.

Le rôle de la prévision en marketing. La prévision est simplement un moyen d’améliorer la prise de décision et non une fin en soi. Les décisions fondées sur des prévisions de taille et des caractéristiques du marché permettent de mieux planifier: Les efforts promotionnels. La stratégie de distribution. L’établissement ou la modification de prix. Les efforts de développement ou amélioration de produits ( R-D).

2. Méthodes de prévision 1) Méthodes subjectives 2) Enquêtes d’intention 3) Techniques extrapolatives 4) Techniques statistiques (régression, modèles économétriques)

2. Méthodes de prévision 2.1. Méthodes subjectives Principe : Entrevues auprès d’experts d’un domaine pour connaître l’évolution probable de ce dernier jury d’experts méthode Delphi extrapolation d’une situation identique

2. Méthodes de prévision 2.2. Enquêtes d’intention Principe : Sondage auprès d’un échantillon de consommateurs ou d’entreprises, visant l’identification de la probabilité d’achat d’un certain type de bien dans un avenir proche.

2.3. Techniques extrapolatives 2. Méthodes de prévision 2.3. Techniques extrapolatives Principe: On utilise les valeurs passées de la variable qu’on veut prévoir (ex. ventes, prix...) pour déterminer son évolution future. Valeurs passées: Série chronologique (chronique)

Dans quels contextes les prévisions sont-elles utiles? Prévoir les besoins en production Adoption d’une technologie nouvelle Modification de la capacité Gestion de l’équipement Localisation et aménagement Gestion des stocks Planification intégrée Gestion stratégique des opérations Gestion budgétaire Gestion des ressources humaines

Facteurs à considérer lors du choix d’une méthode de prévision Coûts d’une méthode de prévision La disponibilité des données Coût de la cueillette des données Temps et ressources requises pour obtenir les prévisions Les usagers des outils de prévisions Fréquence à laquelle les prévisions doivent être faites Le genre de données et nombre de données historiques L’importance de la prévision Les facteurs qui influencent la variable à prévoir Nombre de variables à prévoir Lien entre états passés et états futurs de la variable à prévoir Le choix de la technique de lissage repose sur le calcul de l’erreur absolue et du carré moyen de l’erreur

Le fondement des méthodes de prévisions La prévision est fondé sur un hypothèse selon laquelle on peut trouver dans le passé : Un certain comportement. Une certaine loi. Donc une certaine cause ….. .

Quatre lois doivent être considérées La loi horizontale: Correspond au cas où les données ne représentent aucune tendance (série stationnaire). La loi saisonnière: Existe quand une série fluctue selon un certain facteur saisonnier (1 an <) : mois, jour de la semaine, saison).

Quatre lois doivent être considérées (suite) La loi cyclique: est analogue à une loi saisonnière , mais la longueur du cycle est supérieure à une ans et ne répète pas nécessairement à des intervalles de temps régulier ( Ex. : cycle économique). (1 à 4 ans) La loi de tendance: existe lorsqu’on observe une croissance ou une décroissance de la variable avec le temps.

Le processus de prévision …

Techniques de prévision Méthodes extrapolatives : Moyenne mobile Lissage exponentiel Série chronologique (séance 11b)

Moyenne mobile Pour cette moyenne, seules les observations les plus récentes sont utilisées pour calculer la prévision. Cette méthode nécessite de conserver un grand nombre de données en mémoire.

Moyenne mobile simple. Méthode: À partir d’un ensemble de valeurs observées, on calcule leur moyenne et on utilise la moyenne comme prévision de la prochaine période.

Remarques: Pour calculer la moyenne mobile, il faut disposer des valeurs des «N» dernières observations. Cette méthode donne un poids égal à chacune des «N» dernières valeurs de la série, et un poids égal à zéro aux valeurs observées avant. Chaque nouvelle prévision basée sur une moyenne mobile est un ajustement de la précédante moyenne mobile. L’effet de lissage augmente quand «N» augmente (ajustement beaucoup plus faible d’une prévision à l’autre)

Exemple de moyenne mobile Table 1 1975 1350 Exemple de moyenne mobile

La mesure de l’erreur. La valeur réelle observée est déterminée par une loi d’une part , et par l’intervention du hasard d’autre part ( Réel: loi + hasard) Il existe un écart entre les valeurs prévus et les valeurs réellement observées. un but commun à toutes les techniques est de minimiser ces écarts.

La mesure de l’erreur ( suite ) On définit l’erreur de prévision comme étant la différence entre la valeur réelle et la valeur prédite : Ei = oi - pi O = l’observation pour la période i et P = la prévision pour la même période Le choix de la technique repose sur: Le calcul de la moyenne de l’erreur absolue et du carré moyen de l’erreur pénalise une prévision pour ses écarts extrêmes que les écarts faibles.

Exemple avec la mesure de l’erreur Écart absolu moyen * Carré moyen de l’erreur ** Note : le carré moyen de l’erreur pénalise une prévision beaucoup plus pour les écarts extrêmes que pour les écarts faibles. * ** **

Effet de lissage visualisé

Les limites du modèle. Cette méthode s’applique surtout dans les cas suivant: On fait de la prévision à court terme. Les fluctuations généralement peu importantes (loi horizontale) à court terme. Une certain loi se dissimule dans les valeurs observées, affectée de fluctuation aléatoires. On veut prévoir une seule période.

Les limites du modèle (suite) . Cette méthode s’adapte difficilement dans les cas suivants: La loi observée initialement ( au début de la série chronologique) varie ( effet de la loi de tendance , la loi saisonnière et la loi cyclique). Dans les situation de « court terme », la loi peut souvent être considérée comme horizontale, sans qu’on perde beaucoup de précision.

Lissage exponentiel simple Par lissage des observations historiques on parvient à éliminer leur contenu aléatoire et estimer une valeur de prévision. La méthode accorde le plus grand poids à l’observation la plus récente et des poids décroissants aux valeur les plus anciennes.

Lissage exponentiel simple La nouvelle prévision est simplement l’ancienne révision plus  fois erreur de l’ancienne prévision ( i.e. : Ot-pt). Cette formule se réécrit sous la forme: Pt = Pt-1 + a (Ot-1- Pt-1) Où: Pt = prévision au temps t. Ot = observation au temps t. Pt-1 = Prévision au temps t-1 (période antérieure) Ot-1 = observation au temps t-1 = facteur de pondération compris entre 0 et 1 (appelé aussi constante de lissage)

Lissage exponentiel simple On a besoin seulement de 3 données pour appliquer la méthode (pas nécessaire de disposer d’une longue série) : 1) La prévision pour la période précédente. 2) La demande observée pour cette même période. 3) Facteur de pondération ( coefficient) a. Si a  1 , l’ajustement est important. Si a  0 , l’ajustement est faible. Le facteur de pondération, a, détermine le niveau de lissage. Un grand a dans cette technique a un effet comparable à un faible nombre d’observations incluses dans une moyenne mobile, et vice versa.

Exemple : lissage exponentiel simple

Partant de la formule : Pt = Pt-1 + a (Ot-1- Pt-1) P7 = P6 + a(O6 - P6) = 2056 + .1(1750 – 2056) = 2056 + .1(-306) = 2026 P3 = P2 + a(O2 - P2) = 2000 + .1(1350 – 2000) = 2000 + .1(-650) = 1935

Calcul des erreurs de prévision pour le lissage exponentiel Carré moyen de l’erreur : le « test » ayant le plus de poids…

Comparaison des erreurs de prévision pour le lissage exponentiel 1 345 600 1 345 600 1 345 600 422 500 422 500 422 500 1 345 600 Écart absolu moyen * Carré moyen de l’erreur **

Raisons pour expliquer le succès des méthodes de lissage exponentiel : Le modèle requiert peu d’espace-mémoire car on n’a pas besoin de conserver beaucoup de données historiques. Il faut seulement l’observation la plus récente , la prévision la plus récente et une valeur de a. Les tests pour vérifier comment le modèle se comporte sont faciles à calculer.

Raisons pour expliquer le succès des méthodes de lissage exponentiel: L’effet d’un grand a ou un petit a est tout à fait analogue à l’influence d’un nombre faible ou important d’observations lorsqu’on calcule une moyenne mobile.

Les limites du modèle. Ce modèle n’est pas approprié lorsque la loi sous-jacente à la variable qui fait l’objet de la prévision est affectée par une variable en raison de la tendance, de la saisonnalité ou de l’effet cycle. Il n’y a pas de règle pour déterminer la pondération appropriée de a .