TEST d’ADEQUATION A UNE LOI EQUIREPARTIE Problème : Ce dé est suspect : est-il bien équilibré ? 01/04/2017
1. Expérimentation On lance le dé un certain nombre de fois… 200 fois On note les résultats obtenus : Face 1 2 3 4 5 6 Fréquence 0,195 0,11 0,19 0,16 0,15 01/04/2017 2 2
Remarques On sait que le modèle théorique associé à un dé équilibré est la loi d’équirépartition où la probabilité de chaque événement élémentaire est 1/6 0,17 Sur un échantillon, on observe évidemment toujours un petit écart entre les fréquences obtenues et ce modèle. Expérimentation 01/04/2017
2. Définir un critère qui permet de décider si le dé est pipé ou non On mesure l’écart entre la distribution des fréquences observées et la loi de probabilité : d ² = ( f1– 1/6)² + ( f2– 1/6)² + ( f3 – 1/6)² + ( f4 – 1/6)² + (f5 – 1/6)² + ( f6 – 1/6)². Dans notre exemple, d ²obs 0,005 68. Expérimentation Définir un critère 01/04/2017
« Astuce pratique » : On calcule d ² ou nd ² (avec n le nombre de lancers) ou 1 000d ² pour obtenir une valeur « lisible » : on note 1 000 d ²obs la valeur calculée. Dans notre expérience, on a 1 000 d ²obs 5,68. Expérimentation Définir un critère 01/04/2017
Remarques Si les valeurs observées sont éloignées des valeurs théoriques, d²obs sera « grand » et, s’il est « trop grand » on considérera qu’il n’y a pas adéquation entre les données et la loi équirépartie : l’expérience permettra alors de rejeter l’hypothèse que le dé est équilibré. Expérimentation Définir un critère 01/04/2017
Question : A partir de quelle valeur dira-t-on que d ²obs est trop grand pour que l’on puisse imputer cet écart à une fluctuation d’échantillonnage ordinaire ? Simulation.xls Il s’agit de déterminer un seuil tel que : Ø Si on observe que ce seuil est dépassé par le d²obs, on décidera de rejeter l’hypothèse que le dé est équilibré. Ø Sinon, on ne pourra pas rejeter l’hypothèse que le dé est équilibré. Expérimentation Définir un critère 01/04/2017
Déterminer le seuil : une méthode expérimentale SIMULATION RANDOM ALEA() ???? Expérimentation Définir un critère 01/04/2017
Concrètement, simulons… Avec un dé bien équilibré, on fait une simulation de 200 lancers, pour obtenir une valeur « normale » du d². En recommençant N fois (N > 100) cette simulation, on obtient un échantillon de N valeurs de d² (plus N est grand, plus l’échantillon est fiable). On détermine alors le 9ème décile ( D9 ) de la série des N valeurs (seules 10% des simulations ont donné une valeur supérieure). simuler de2.xls Expérimentation Définir un critère 01/04/2017
Résultats de la simulation On a simulé au moins 100 séries de 200 lancers avec un dé bien équilibré. Pour chaque série, on a noté la valeur du 1 000d² . On a donc une liste d’au moins 100 valeurs de 1 000d² obtenues avec un dé équilibré. Expérimentation Définir un critère 01/04/2017
et 90 % des valeurs sont inférieures à 8,105. Dans cet échantillon de valeurs de 1 000 d ², le 9ème décile est 8,105. Cela signifie que, dans cet échantillon fabriqué avec un dé équilibré, seulement 10 % des valeurs sont supérieures à 8,105 et 90 % des valeurs sont inférieures à 8,105. On décide de prendre comme seuil de décision cette valeur 8,105. Expérimentation Définir un critère 01/04/2017
3. Utiliser le critère pour conclure Dans l’expérience réalisée avec notre dé suspect, on avait trouvé 1 000 d ²obs 5,68. CONCLUSION DU TEST: Comme 5,68 < 8,105, on ne peut pas rejeter l’hypothèse que ce dé est équilibré. Expérimentation Définir un critère Conclusion 01/04/2017
4. En pratique : que retenir ? Pour tester si on a une situation d’équirépartition: On fait une expérience de n répétitions et on note les résultats. On calcule d²0BS (somme des carrés des distances entre les observations et le modèle théorique) ou nd²OBS ou 1000d²OBS. On compare au critère fourni par une simulation (9ème décile). On conclut… en rejetant ou pas l’hypothèse d’équirépartition. Expérimentation Définir un critère Conclusion A retenir 01/04/2017 13
Limites de la méthode… On ne prouve pas que le dé est équilibré (on se contente de tester une hypothèse). Avec cette méthode, on risque de rejeter l’hypothèse que le dé est équilibré à tort dans 10 % des cas. Pour diminuer ce risque d’erreur à 5 %, il faudrait prendre le 95ème centile de la série des d². Mais alors, on augmente le seuil, et donc le risque d’accepter le dé, alors qu’il est pipé… simuler de2.xls Expérimentation Définir un critère Conclusion A retenir 01/04/2017