Les 3 identités remarquables (x + …)² = x² + 6x + … … – … + 4 = (2x – …)² (3 – …)(3 + …) = … – x²
Calcul 1 36a² – 12a + 1 = (…a .. …)²
Calcul 2 (… – …)(… + 8) = 16x²– …
Calcul 3 (…x .. 1)² = 81x ² – 18x +…
Calcul 4 (2x + …)(… – …) = …x² – 49
Calcul 5 25x² + …x + 1 = (…x + …)²
Prêt pour la correction…
Calcul 1 36a² – 12a + 1 = (…a .. …)²
a = 6a et b = 1 a² – 2ab + b² = (a – b)² 36a² – 12a + 1 = (…a .. …)² Calcul 1 a² – 2ab + b² = (a – b)² 36a² – 12a + 1 = (…a .. …)² a = 6a et b = 1
a = 6a et b = 1 a² – 2ab + b² = (a – b)² Calcul 1 a² – 2ab + b² = (a – b)² (6a)² – 2 x 6a x 1 + 1² = (…a .. …)² a = 6a et b = 1
a = 6a et b = 1 a² – 2ab + b² = (a – b)² Calcul 1 a² – 2ab + b² = (a – b)² (6a)² – 2 x 6a x 1 + 1² = (…a .. …)² a = 6a et b = 1
a = 6a et b = 1 a² – 2ab + b² = (a – b)² 36a² – 12a + 1 = (6a – 1)² Calcul 1 a² – 2ab + b² = (a – b)² 36a² – 12a + 1 = (6a – 1)² a = 6a et b = 1
Calcul 2 (… – …)(… + 8) = 16x²– …
(a – b)(a + b) = a² – b² (… – …)(… + 8) = 16x²– … a = 4x et b = 8 Calcul 2 (a – b)(a + b) = a² – b² (… – …)(… + 8) = 16x²– … a = 4x et b = 8
(a – b)(a + b) = a² – b² a = 4x et b = 8 (… – …)(… + 8) = (4x)²– … Calcul 2 (a – b)(a + b) = a² – b² (… – …)(… + 8) = (4x)²– … a = 4x et b = 8
(a – b)(a + b) = a² – b² a = 4x et b = 8 (… – …)(… + 8) = (4x)²– … Calcul 2 (a – b)(a + b) = a² – b² (… – …)(… + 8) = (4x)²– … a = 4x et b = 8
(a – b)(a + b) = a² – b² a = 4x et b = 8 (4x – 8)(4x + 8) = 16x²– 64 Calcul 2 (a – b)(a + b) = a² – b² (4x – 8)(4x + 8) = 16x²– 64 a = 4x et b = 8
Calcul 3 (…x .. 1)² = 81x ² – 18x +…
(a – b)² = a² – 2ab + b² a = 9x et b = 1 (…x .. 1)² = 81x ² – 18x +… Calcul 3 (a – b)² = a² – 2ab + b² (…x .. 1)² = 81x ² – 18x +… a = 9x et b = 1
(a – b)² = a² – 2ab + b² a = 9x et b = 1 Calcul 3 (a – b)² = a² – 2ab + b² (…x .. 1)² = (9x)² – 2 x 9x x 1+… a = 9x et b = 1
(a – b)² = a² – 2ab + b² a = 9x et b = 1 Calcul 3 (a – b)² = a² – 2ab + b² (…x .. 1)² = (9x)² – 2 x 9x x 1+… a = 9x et b = 1
(a – b)² = a² – 2ab + b² a = 9x et b = 1 (9x – 1)² = 81x ² – 18x + 1 Calcul 3 (a – b)² = a² – 2ab + b² (9x – 1)² = 81x ² – 18x + 1 a = 9x et b = 1
Calcul 4 (2x + …)(… – …) = …x² – 49
(a + b)(a – b) = a² – b² a = 2x et b = 7 (2x + …)(… – …) = …x² – 49 Calcul 4 (a + b)(a – b) = a² – b² (2x + …)(… – …) = …x² – 49 a = 2x et b = 7
(a + b)(a – b) = a² – b² a = 2x et b = 7 (2x + …)(… – …) = …x² – 7² Calcul 4 (a + b)(a – b) = a² – b² (2x + …)(… – …) = …x² – 7² a = 2x et b = 7
(a + b)(a – b) = a² – b² a = 2x et b = 7 (2x + …)(… – …) = …x² – 7² Calcul 4 (a + b)(a – b) = a² – b² (2x + …)(… – …) = …x² – 7² a = 2x et b = 7
(a + b)(a – b) = a² – b² a = 2x et b = 7 (2x + 7)(2x – 7) = 4x² – 49 Calcul 4 (a + b)(a – b) = a² – b² (2x + 7)(2x – 7) = 4x² – 49 a = 2x et b = 7
Calcul 5 25x² + …x + 1 = (…x + …)²
a = 5x et b = 1 a² + 2ab + b² = (a + b)² 25x² + …x + 1 = (…x + …)² Calcul 5 a² + 2ab + b² = (a + b)² 25x² + …x + 1 = (…x + …)² a = 5x et b = 1
a = 5x et b = 1 a² + 2ab + b² = (a + b)² (5x)² + …x + 1² = (…x + …)² Calcul 5 a² + 2ab + b² = (a + b)² (5x)² + …x + 1² = (…x + …)² a = 5x et b = 1
a = 5x et b = 1 a² + 2ab + b² = (a + b)² (5x)² + …x + 1² = (…x + …)² Calcul 5 a² + 2ab + b² = (a + b)² (5x)² + …x + 1² = (…x + …)² a = 5x et b = 1
a = 5x et b = 1 a² + 2ab + b² = (a + b)² 25x² + 10x + 1 = (5x + 1)² Calcul 5 a² + 2ab + b² = (a + b)² 25x² + 10x + 1 = (5x + 1)² a = 5x et b = 1
1. 36a² – 12a + 1 = (6a – 1)² 2. (4x – 8)(4x + 8) = 16x²– 64 3. (9x – 1)² = 81x ² – 18x + 1 4. (2x + 7)(2x – 7) = 4x² – 49 5. 25x² + 10x + 1 = (5x + 1)²