Classification: signatures spectrales
L’espace de représentation et les méthodes de classification Dans une situation idéale, chaque classe d’objets est représentée par un point unique dans cet espace. À cause des variations des conditions d'illumination ainsi que les variations des propriétés des objets, les pixels appartenant à une classe d'objets sont représentés par une série de points plus ou moins dispersés dans cet espace. Les méthodes de classification visent à définir les équations mathématiques qui permettent de localiser dans cet espace les limites de chacune des classes
Un exemple: quatre domaines ont été identifiés, le pixel X dont la classe est recherchée, est représenté dans l’espace d’attributs. Il tombe dans le domaine de feuillus…la classe feuillus lui est alors assignée F C B Bande 1 Bande 2 S x F : feuillus C : conifères B : béton S : sol à nu
Le problème de classification COMMENT DÉFINIR LE DOMAINE DE CHAQUE CLASSE???? DEUX APPROCHES: DIRIGÉE : un échantillon de pixels dont la classe est connue est analysé afin de définir les domaines NON-DIRIGÉE: un échantillon de pixels est analysé afin de définir des groupements de pixels dans l’espace d’attributs. Chaque groupement (cluster) définit un domaine dont la signification géographique reste à établir
La classification dirigée: quelques techniques de base
La classification par distance minimale Hypothèse: le domaine d’une classe est défini en fonction de la proximité (distance euclidienne) de tous les points du domaine à un point central: l’analyste fournit des échantillons de pixels par classe L’algorithme calcule le centre de chaque classe (moyennes) Illustration
Distance minimale Etc. Parmi ces distances quelle est la plus courte? Assigne le pixel 1 à la classe pour laquelle la distance est minimale
Les domaines des classes implicitement définis (polygones de Thiessen)
Exemple: image SPOT à 4 bandes
Choix de pixels échantillons Classes: Eau; Gazon; Boisés; Sol à nu; Bâti; Surfaces pavées.
Diffusiogrammes ROUGE-PIR Image entière
Diffusiogrammes ROUGE-PIR Image entière EAU
Diffusiogrammes ROUGE-PIR Image entière GAZON
Diffusiogrammes ROUGE-PIR Image entière BOISÉ
Diffusiogrammes ROUGE-PIR Image entière SOL À NU
Diffusiogrammes ROUGE-PIR Image entière BÂTI
Diffusiogrammes ROUGE-PIR Image entière SURFACES PAVÉES
CLASSIFICATION FINALE
La classification par parallélépipèdes Hypothèse: le domaine d’une classe est défini en fonction de la proximité de tous les points du domaine à un point central: la proximité est évaluée tenant compte de l’écart type dans chaque bande spectrale l’analyste fournit des échantillons de pixels par classe L’algorithme calcule le centre de chaque classe (moyennes) ainsi que la dispersion (écarts types) Illustration
La classification par parallélépipèdes
La classification par maximum de vraisemblance (cas paramétrique) Hypothèse: le domaine d’une classe, supposée distribuée normalement, est défini en fonction de la proximité de tous les points du domaine à un point central: la proximité est évaluée tenant compte de la matrice de variance-covariance l’analyste fournit des échantillons de pixels par classe L’algorithme calcule le centre de chaque classe (moyennes) ainsi que la dispersion dans l’espace multidimensionnel (matrices de variance-covariance) Illustration
La classification par maximum de vraisemblance (cas paramétrique)
Exemple: Image à classifier: 3 bandes spectrales (V-R-PIR) + 15 m de résolution spatiale + été
Choix des sites d’entraînement par classe Règles: Par classe les sites doivent totaliser plus que 30 pixels Ils doivent être pris à différents endroits sur l’image pour capter la variabilité intra-classe
Choix des sites d’entraînement par classe Exemple1: Eau
Choix des sites d’entraînement par classe Exemple2: Urbain classe 1: forte densité du bâti Classe 2: faible densité du bâti
Choix des sites d’entraînement par classe Exemple3: Rural classe 1: boisés Classe 2: sol à nu
Génération des ‘signatures spectrales’
Test de classification
Test de classification (en noir pixels non classifiés) Résultat mitigé; surtout beaucoup de pixels non classifiés possibilités d’amélioration: Spécifiez de nouvelles classes; mieux définir les sites d’entraînement…etc.
Revenons aux méthodes avec des explications théoriques
La classification dirigée La plupart des classificateurs dirigés adoptent une vision probabiliste de ce qu’une classe et se fondent sur une règle d’attribution d’un vecteur de mesures à une classe: la règle de Bayes
La règle de BAYES: un exemple Un paléontologue trouve un fragment d’un fossile d’un animal marin dans la zone de jonction des deux ruisseaux. Dans quel bassin versant se trouvent des restes plus complets de cet animal? H1: le bassin de 18 km2 H2: le bassin de 10 km2
La règle de BAYES: un exemple Probabilités a priori fonction de la taille relative du basin: P(H1) = 18/28 = 0,64 P(H2) = 10/28 = 0,36 Probabilité conditionnelle (VRAISEMBLANCE): par une carte géologique il calcule que 35% des roches du Crétacé dans le bassin H1 est d’origine marine tandis que 80% le sont dans le bassin H2 P (E|H1) = 0,35; P(E|H2)=0,80
La règle de BAYES: un exemple P (H1|E) = probabilité a posteriori étant donné le fossile E, ceci provient du bassin H1 P (H2|E) = probabilité a posteriori étant donné le fossile E, ceci provient du bassin H1 Le fossile provient du bassin avec le maximum de probabilité a posteriori
La règle de BAYES: un exemple a posteriori = (vraisemblance x a priori)/évidence Évidence = P(E|H1)*P(H1) + P(E|H2)*P(H2)= (0,35 *0,64 + 0,80*0,36) = 0,51
La règle de BAYES: un exemple P(H1|E) = 0,35*0,64/0,51 = 0,44 P(H2|E) = 0,80*0,36/0,51 = 0,56 Donc H2
Algorithme de calcul Pour minimiser les erreurs (mauvaises classifications) : Puisque l’évidence est pareille pour toutes les classes, la règle se simplifie comme suit:
Algorithme de classification Si toutes les classes sont équiprobables la règle s’exprime tout simplement : assigne le vecteur de mesures x à la classe avec le maximum de vraisemblance. Mais comment connaître la vraisemblance par classe? Solution 1: paramétrique Solution 2: non paramétrique
….Un rappel des notions statistiques Solution paramétrique: hypothèse les classes ont une distribution qui suit la loi de la distribution multinormale ….Un rappel des notions statistiques
Distribution multi-normale ….Un rappel des notions statistiques
Un rappel des notions statistiques Matrice de variance-covariance TM1 TM2 TM3 TM4 TM5 TM6 47.65 24.76 15.70 35.71 20.34 31.91 12.45 8.27 12.01 20.56 34.71 23.79 38.81 22.30 114.89 30.46 18.70 30.86 12.99 60.63 44.92
….Un rappel des notions statistiques Composantes principales (variance selon ses axes=valeurs propres)… Ellipse de probabilité constante
Algorithme de calcul Ainsi en remplaçant par la formule de la distribution multinormale et en prenant les logarithmes naturelles nous pouvons arriver à la formulation de la règle de décision du classificateur (fonctions discriminantes)
Formulation
Domaines des classes (implicitement définis) Domaines des classes 2-D Domaines des classes 3-D
Classificateurs non paramétriques Contrairement aux classificateurs paramétriques ceux dits non paramétriques ne font aucune hypothèse quant à la distribution de probabilité des valeurs d’une classe quelconque. Une des méthodes souvent utilisées est celle des k-plus proches voisins. La probabilité d’appartenance d’un point à un domaine quelconque est approchée par la fréquence relative des prototypes par classe sur les k prototypes retrouvés les plus proches. Le nombre k ainsi que l’étendue du voisinage sont définis par l’opérateur. Le point est alors attribué à la classe avec la plus forte probabilité d’appartenance. Exemple: il y a quatre classes Noir (N), Gris foncé (GF), gris pâle (GP) et blanc (B). L’utilisateur a fixé le nombre de plus proches prototypes voisins à 10. Pour chaque vecteur à classer, l’algorithme cherche alors ces 10 plus proches voisins. Ici il y a 6 B, 2 GF et 2 GP. Le pixel est classifié dans la classe B. Dans un cas d’égalité, l’algorithme choisit la classe dont les prototypes sont les moins éloignés en termes de distance euclidienne du point examiné
Qualité de la classification On teste la qualité des sites d’entraînement Si la qualité est acceptable on passe à la validation de la classification, sinon on recommence avec le choix des sites La validation: on choisit des sites tests dont on connaît la classe et on vérifie les résultats de la classification
Exemple: qualité des sites choisis – mesure de séparabilité Ici Divergence Transformée : si 2 séparabilité parfaite
L’évaluation quantitative: la matrice de confusion C’est un tableau à double entrée (table de contingence)comportant les classes Classes tests classe 1 2 3 Classes affectées
Qualité de la classification Matrice de confusion
Validation
Classification non dirigée
Recherche des pics et des vallées: histogramme multidimensionel
Classification non dirigée (par coalescence) ou (clustering): K-clusters L’analyste spécifie a) le nombre de classes (K) b) les paramètres d’arrêt de l’algorithme L’algorithme regroupe les données (processus itératif) – il établit les centres des classes (une classe = un cluster) spectrales, spatiales,… 2. classifie tous les pixels selon leur proximité aux centres des clusters 3. produit l’image classifiée L’analyste trouve la signification des clusters (il se peut que certains clusters soient regroupés)
Comment établissons-nous les centres? illustration
Exemple: regrouper en deux classes
Début: choix des deux centres arbitraires Centres initiaux
Assigner un pixel à un des deux centres selon sa distance euclidienne
Calculer la nouvelle position des deux centres selon les positions des pixels assignés à l’étape précédente
Réassigner les pixels aux nouveaux centres
Arrêter lorsque les déplacements des centres est inférieur à un seuil
Clusters vs. Classes thématiques Classe thématique: route Clusters vs. Classes thématiques Béton Idéal Clusters Classes thématiques A B 1 2 Réalité A B C 1 2 Asphalte ou Asphalte fraîche A B C 1 2 3 4 Vieille asphalte
Limitations Le nombre de classes? La séparation des classes qui n’ont pas une distribution circulaire? Données originales Données classées
Exemple: Image à classifier: 3 bandes spectrales (V-R-PIR) + 15 m de résolution spatiale + été 16 clusters demandés
Exemple de classification non dirigée