Échantillonnage (STT-2000) Section 2 Tirage systématique (plan SY). Version: 22 août 2003
Plan de tirage systématique Supposons que l’on veut un échantillon de taille n. Pour simplifier, on suppose que N/n=a, avec a un entier. Définition formelle d’un tirage systématique: 1. On prend une unité, à chances égales, parmi les a premières unités dans la base de sondage. Supposons que l’on a pris l’unité j. 2. On prend ensuite de manière successives les unités, j+a, j+2a, …, j+(n-1)a STT-2000; Échantillonnage
STT-2000; Échantillonnage Propriétés On note qu’il n’y a seulement que a différents échantillons possibles. Si on a choisit l’unité j, l’échantillon est alors STT-2000; Échantillonnage
STT-2000; Échantillonnage Plan systématique On utilise souvent ce plan avec les tirages téléphoniques. On prend une hasard une unité, disons parmi les 20 premières, on se muni d’un pas, disons valant 30, et on lit « un nom sur 30 » dans le bottin. Procédons encore plus spécifiquement. Supposons qu’on a une population de taille N=12 et que l’on veut un échantillon avec n=3. Donc N/n = 12/3 = 4 = a. STT-2000; Échantillonnage
Illustration du plan systématique N=12, n=3, a=4 On doit prendre une unité parmi les quatre premières. Supposons que l’on a pris {2} L’échantillon résultant est {2, 6, 10} STT-2000; Échantillonnage
Probabilités d’inclusion dans un plan SY On suppose encore que N/n = a. STT-2000; Échantillonnage