Système de numération maya : Pierre Montfort Gladys Fortin 2nde E
Sommaire : Présentation de la civilisation maya a) Où et quand? b) Qu’ont t-ils fait? Présentation de la numération a) De 0 à 19 b) A partir de 20 c) Les dates Explication de conversions Exercices Conclusion Bibliographie
Présentation de la civilisation maya (1) : Mayas : environ 2600 av J.C - XVIème s en Amérique centrale. Civilisation précolombienne, étendue au sud-est du Mexique (péninsule du Yucatán), à l'ouest du Honduras et du Salvador, au nord du Bélize et au Guatemala.
Présentation de la civilisation maya (2) : L'écriture maya : les premières écritures. Agriculture Mathématiques : Astronomie Numération Premières écritures
Présentation de la numération : Mise en place d’une numération de position en base de 20, comprenant le zéro. Procédé d'écriture des nombres, dans lequel chaque position est reliée à la position voisine par un multiplicateur ou base du système de numération. La valeur d'une position est celle du symbole multipliée par la base, ici 20 donc 20 symboles.
A) De 0 à 19 : Le zéro possède une notation : une coquille. Il marque le vide. Un point vaut 1 unité. Une barre vaut 5 unités.
B) A partir de 20 : Ex : premier niveau=valeur du symbole*20 Dans la numération maya c’est la position du chiffre qui determine sa valeur. Les chiffres se superposent sur plusieurs niveaux. Lecture de haut en bas.
C) Les dates : *7200 (20*18*20) *360 (20*18) *20 *0 1 an : Attention, le système maya est irrégulier pour les dates : le troisième étage ne comptera pas une 400-aine mais une 360-aine (20×18). Ceci reporte l'étage suivant non pas à la 8000-aine mais à la 7200-aine (20×18×20) et le cinquième à la 144000-aine (20×18×20×20). *7200 (20*18*20) *360 (20*18) *20 *0
Explication des conversions : Dizaine= *20 Centaine= *400 Millier= *8000 (83) déc = ( ) syst ( ) syst = (37) déc
Exercices : Convertir en numération maya le nombre 128. Réponse : (6*20+8) A quel nombre correspond ce code ? Réponse : 4805 (12*400+20*0+5)
Conclusion : Dans la numération d'addition, la valeur du nombre est égale à la somme des chiffres quelque soit leur position. Dans la numération de position, la position des chiffres les uns par rapport aux autres à une grande importance, un même chiffre n'a pas la même valeur suivant sa position. Le système de numération maya est donc un système de position.
Source : fr.wikipédia.org www.google.fr « rubrique images » www.techno-science.net