Albert EINSTEIN Physicien américain d’origine allemande, auteur de la célèbre formule E=mc², Albert Einstein a joui d’une renommée internationale. Malgré des débuts difficiles, ses théories sur les relativités restreinte et générale ont bouleversé le monde de la physique et lui ont valu la reconnaissance de ses pairs. Médiatisé à outrance, il s’est fait aussi le défenseur de la paix et a toujours regretté sa part de responsabilité dans l’élaboration de la bombe atomique. Instigateur d’une nouvelle ère de la physique, Einstein, par son approche de la recherche et sa personnalité marquante, est devenu, aujourd’h...
Albert a l enfance
Ma star 1879 14 mars Naissance d’Albert Einstein Albert Einstein naît à Ulm, dans l’État de Wurtemberg en Allemagne. Sa mère est musicienne, et son père possède une usine électrochimique. Il grandira également auprès de son oncle ingénieur, qui, avec son père, lui donnera le goût des mathématiques.
suite 1896 Entrée à l’Ecole polytechnique fédérale de Zurich Après une première tentative infructueuse, Einstein est accepté à l’Ecole polytechnique de Zurich. Sans briller dans les études, il obtiendra son diplôme en 1900 et y rencontrera sa future épouse, Mileva Maric. 1902 juin Il occupe le poste d’expert à l’Office des brevets de Berne
suite 1903 Mariage avec Mileva Einstein épouse son ancienne camarade d’étude, Mileva Maric, avec laquelle il a déjà eu une fille, Liersel. Mais le couple l’avait abandonnée de peur qu’une naissance hors mariage puisse nuire à la carrière professionnelle d’Einstein. Ensemble, ils auront deux fils, Hans Albert (1904) et Edward (1910), avant de se séparer. Einstein se remariera en 1919 avec sa cousine, Elsa.
Suite le premier article, publié en mars, expose un point de vue révolutionnaire sur la nature corpusculaire de la lumière, par l’étude de l’effet photoélectrique. Einstein l’intitule : Sur un point de vue heuristique concernant la production et la transformation de la lumière. Il y relate ses recherches sur l’origine des émissions de particules, en se basant sur les travaux de Planck qui avait, en 1900, établi une formule d’un rayonnement quantifié, c’est-à-dire discontinu. Planck avait été contraint d’aborder le rayonnement lumineux émis par un corps chaud d’une manière qui le déconcertait : pour mettre en adéquation sa formule et les résultats
Suite expérimentaux, il lui avait fallu supposer que le courant de particules se divisait en blocs d’énergie, qu’il appela quanta. Bien qu’il pensât que ces quanta n’avaient pas de véritable existence, sa théorie semblait prometteuse et plusieurs physiciens y travaillèrent. Einstein réinvestit les résultats de Planck pour étudier l’effet photoélectrique, et il conclut en énonçant que la lumière se comportait à la fois comme une onde et un flux de particules. L’effet photoélectrique a donc fourni une confirmation simple de l’hypothèse des quanta de Max Planck. En 1920, les quanta furent appelés les photons ;
suite deux mois plus tard, en mai, Einstein fait publier un deuxième article sur le mouvement brownien. Il explique ce mouvement par une entorse complète au principe d’entropie tel qu’énoncé à la suite des travaux de Newton sur les forces mécaniques : selon lui, les molécules tireraient leur énergie cinétique de la chaleur. Cet article fournit une preuve théorique (vérifiée expérimentalement par Jean Perrin en 1912) de l’existence des atomes et des molécules. Le mouvement brownien a été expliqué au même moment que par Einstein par Marian Smoluchowski et par Louis Bachelier en 1900 ;
suite le troisième article est encore plus important, car il représente la rupture intuitive d’Einstein avec la physique newtonienne. Dans celui Sur l’électrodynamique des corps en mouvement, le physicien s’attaque au postulat d’un espace et d’un temps absolus, tels que définis par la mécanique de Newton, et à l’existence de l’éther, milieu interstellaire inerte qui devait soutenir la lumière comme l’eau ou l’air soutiennent les ondes sonores dans leurs déplacements. Cet article, publié en juin, amène à deux conclusions : l’éther n’existe pas, et le temps et l’espace
suite sont relatifs. Le nouvel absolu qu’Einstein édifie est détaché de la valeur quantitative de ces deux notions que sont l’espace et le temps, qui restent cependant liées par la conservation à travers différents référentiels d’études de l’intervalle d’espace-temps entre événements, notion similaire à la distance entre points de l’espace. Les conséquences de cette vision révolutionnaire de la physique, qui découle de l’idée qu’Einstein avait de la manière dont les lois physiques devaient contraindre l’univers, ont bousculé tant la physique théorique que ses applications pratiques. L’apport exact d’Einstein par rapport à Henri Poincaré et quelques autres physiciens est aujourd’hui assez disputé (voir Controverse sur la paternité de la relativité) ;
suite Son ancien condisciple Marcel Grossmann l’aide dans ses travaux en lui apportant ses connaissances en géométrie différentielle : ils publient un article sur les tenseurs de Ricci et de Riemann-Christoffel en 1913. En octobre 1914, Einstein publie un article sur la géométrie différentielle, et en juin 1915, il donne des conférences à l’université Göttingen devant Hilbert et Klein.
suite En 1916, Einstein publie sa théorie dite de la relativité générale. Les « équations du champ » sont la clé de voûte de cette théorie. Elles décrivent le comportement du champ de gravitation (la métrique de l’espace-temps) en fonction du contenu énergétique et matériel. La théorie de la relativité ainsi que ses ouvrages de 1905 et 1916 forment la base de la physique moderne.
suite La théorie de la relativité générale publiée, Einstein recommence à travailler sur la physique des quanta et introduit en 1917 la notion d'émission stimulée qui lui permet de retrouver la loi de Planck à partir d'hypothèses purement quantiques sur la façon dont les quanta de lumière (photons) sont absorbés et émis par les atomes8. Idée fructueuse qui est à la base du développement du maser et du laser. La même année, Einstein montre qu'il convient d'associer une quantité de mouvement au quantum de lumière ; hypothèse qui sera validée par l'expérience en 1923 grâce aux travaux d'Arthur Compton sur la diffusion des rayons X8.
suite La relation d'Einstein avec la physique quantique alors naissante est remarquable : d’un côté, nombre de ses travaux sont à la base du développement de cette nouvelle physique, comme son explication de l’effet photoélectrique ; d’un autre côté, il critiquera beaucoup d’idées et d’interprétations de la mécanique quantique, son non-déterminisme en particulier. Le débat entre le groupe formé par Einstein et Erwin Schrödinger et celui de Niels Bohr et Werner Heisenberg se situait à la frontière de la physique et de la philosophie.
En 1927, invité au cinquième congrès Solvay, il a de nombreuses conversations avec Niels Bohr à ce sujet. Il dit alors : « Gott würfelt nicht » (« Dieu ne joue pas aux dés ») pour marquer son opposition à l’interprétation probabiliste de la physique quantique, ce à quoi Niels Bohr répondit : « Qui êtes-vous Albert Einstein pour dire à Dieu ce qu’il doit faire ? ». Le paradoxe EPR qu’il précise en 1935 avec Boris Podolsky et Nathan Rosen à Princeton reste aujourd’hui un exemple important d'une tentative pour questionner les fondements de la mécanique quantique.
Conclusion Albert Enstein est le plus grand génie de tout les temps même si il a inventer la bombe atomique c est décourte sur la physique nous aidera beaucoup