Classification naturelle = phylogénie
Arbre = réseau connexe non cyclique Quelques définitions Arbre = réseau connexe non cyclique noeud branche Réseau connexe non cyclique Réseau non connexe non cyclique Réseau connexe cyclique
Plusieurs graphismes pour les phylogénies B C A B C D D B A A D B C C D A A B B C C D D
ARBRE NON RACINÉ et ARBRE RACINÉ 1 4 Oiseaux Placentaires Monotrèmes Marsupiaux 5 2 3 Oiseaux Monotrèmes Monotrèmes Monotrèmes Oiseaux Oiseaux Marsupiaux Marsupiaux Marsupiaux 1 2 5 Placentaires Placentaires Placentaires Marsupiaux Placentaires Placentaires Marsupiaux Monotrèmes Monotrèmes 3 4 Oiseaux Oiseaux
Racine et groupe extérieur 1 Oiseaux Placentaires Monotrèmes Marsupiaux Oiseaux Monotrèmes Marsupiaux 1 Placentaires Un groupe extérieur (outgroup) est presque toujours utilisé pour raciner les phylogénies moléculaires
Quelques exercices Crocodiles Oiseaux Dinosaures Lézards D’après l’arbre ci-dessus, quelle expression décrit correctement les relations de parenté ? Un crocodile est plus proche parent d’un lézard que d’un oiseau Un crocodile est plus proche parent d’un oiseau que d’un lézard Un crocodile est aussi proche parent d’un oiseau que d’un lézard Un crocodile est proche parent d’un lézard, mais n’est pas proche parent d’un oiseau
Quelques exercices Phoque Cheval Girafe Hippopotame Baleine D’après l’arbre ci-dessus, quelle expression décrit correctement les relations de parenté ? Un phoque est plus proche parent d’un cheval que d’une baleine Un phoque est plus proche parent d’une baleine que d’un cheval Un phoque est aussi proche parent d’un cheval que d’une baleine Un phoque est proche parent d’une baleine, mais n’est pas proche parent d’un cheval
Quelques exercices Volvox Pin Maïs Fougère Levure Homme Giardia E. coli Lequel(s) des arbres ci-dessous est faux, sachant que l’arbre ci-dessus est vrai ? Volvox Pin Homme Maïs Fougère Volvox Giardia Homme E. coli Levure Volvox Homme E. coli Pin Levure Giardia E. coli Pin Maïs Levure 1 2 3 4
Quelques exercices Lequel des quatre arbres ci-dessus décrit des relations de parenté différentes ?
Quelques exercices Lepidodendron Mousse Chêne If Psilotum Fougère Arbre Perte des feuilles Arbre Graine Vraies feuilles Dans l’arbre ci-dessus, on suppose que l’ancêtre était une herbe (et non un arbre) sans feuilles ni graines. D’après cet arbre et en supposant que tous les changements de ces caractères sont indiqués, laquelle des espèces actuelles est un arbre dépourvu de vraies feuilles ? 1) Lepidodendron 2) Mousse 3) Chêne 4) Psilotum 5) Fougère
Savoir lire et interpréter un arbre Pour en savoir plus, et avoir plus d’exercices : www.tree-thinking.org
Cas idéal AAAAAAAAAAA CAAAAAAAAAA AAAAAAAAAAC CUAAAAAAAAA CAGGAAAAAAA Espèce 1 Espèce 2 Espèce 3 Espèce 4 CAAAAAAAAAA 1 AAAAAAAAAAC 1 CUAAAAAAAAA 1 CAGGAAAAAAA 2 AAAAAAAAUGC 2 AAAAGGCUAAC 4 Espèce 1 CUAAAAAAAAA Espèce 2 CAGGAAAAAAA Espèce 3 AAAAAAAAUGC Espèce 4 AAAAGGCUAAC Espèce 2 -AGG------- Espèce 3 AA------UGC Espèce 4 AA--GGCU--C
Avec n espèces, il y a (2n – 5)(2n – 7)…(5)(3)(1) arbres non racinés Combien existe-t-il d’arbres ? A D D 3 espèces : 1 arbre B C D E 4 espèces : 3 * 1 arbres A B C D A B C D E 5 espèces : 5 * 3 * 1 arbres 7 (2*6-5) branches 6 espèces : 7 * 5 * 3 * 1 arbres Avec n espèces, il y a (2n – 5)(2n – 7)…(5)(3)(1) arbres non racinés
Le nombre d’arbres possibles Augmentation exponentielle du nombre d’arbres possibles : problème NP-complet (Non-Polynomial)
Cas idéal Arbre #1 Arbre #2 Arbre #3 AAAAAAAAAAA CAAAAAAAAAA Espèce 1 Espèce 2 Espèce 3 Espèce 4 CAAAAAAAAAA 1 AAAAAAAAAAC 1 CUAAAAAAAAA 1 CAGGAAAAAAA 2 AAAAAAAAUGC 2 AAAAGGCUAAC 4 Espèce 1 CUAAAAAAAAA Espèce 2 CAGGAAAAAAA Espèce 3 AAAAAAAAUGC Espèce 4 AAAAGGCUAAC Espèce 2 -AGG------- Espèce 3 AA------UGC Espèce 4 AA--GGCU--C Arbre #1 Arbre #2 Arbre #3 1 2 3 4
L’information phylogénétique Site 2 Site 1 A 3 A 4 2 C 1 C A C 3 A C 2 4 A 1 changement 2 changements 1 A 2 U A 4 A 3 A Arbre #1 1 changement 1 A U 2 3 A A 4 A Arbre #2 1 changement 1 A U 2 A 3 4 A A Arbre #3 1 changement Site informatif : un site avec au moins deux nucléotides différents (états de caractère) présents au moins deux fois
Parcimonie maximale Choisir l’arbre nécessitant le plus petit nombre de substitutions (changements) Principe du “rasoir d’Occam” : la meilleure explication des données est la plus simple, celle qui nécessite le plus petit nombre d’hypothèses ad hoc Le nombre total de changements évolutifs sur une phylogénie (longueur de l’arbre) is simplement la somme du nombre de changements à chaque site Espèce 1 CUAAAAAAAAA Espèce 2 -AGG------- Espèce 3 AA------UGC Espèce 4 AA--GGCU--C Arbre #1 : L=1+1+1+1+1+1+1+1+1+1+1=11
Cas idéal Sites informatifs Arbre #1 Arbre #2 Arbre #3 L=11 L=13 L=13 AAAAAAAAAAA 1 1 CAAAAAAAAAA AAAAAAAAAAC 1 2 2 4 CUAAAAAAAAA CAGGAAAAAAA AAAAAAAAUGC AAAAGGCUAAC Espèce 1 Espèce 2 Espèce 3 Espèce 4 Espèce 1 CUAAAAAAAAA Espèce 2 -AGG------- Espèce 3 AA------UGC Espèce 4 AA--GGCU--C Sites informatifs Arbre #1 Arbre #2 Arbre #3 1 3 1 2 1 2 2 4 3 4 4 3 L=11 L=13 L=13
Maximum de parcimonie Deux étapes de minimisation : Pour un arbre donné, minimisation du nombre de changements nécessaires pour expliquer l’alignement Choix parmi tous les arbres possibles de celui ayant le plus petit nombre de changements
Un peu de vocabulaire AAAAAAAAAAA 1 1 CAAAAAAAAAA AAAAAAAAAAC 1 2 2 4 CUAAAAAAAAA CAGGAAAAAAA AAAAAAAAUGC AAAAGGCUAAC Espèce 1 Espèce 2 Espèce 3 Espèce 4 Espèce 1 CUAAAAAAAAA Espèce 2 -AGG------- Espèce 3 AA------UGC Espèce 4 AA--GGCU--C Synapomorphie : Caractéristique nouvelle et distinctive partagée par un groupe d'organismes (C à la position 1) Symplésiomorphie : similitude due au partage d’un état ancestral de caractère (A à la position 1) Autapomorphie : état dérivé non partagé (U à la position 2)
Une substitution multiple AAAAAAAAAAA CAAAAAAAAAA CUAAAAAAAAA CAGGAAAAAAA 1 2 Espèce 1 Espèce 2 AAAAAAAAAAC AAAAAAAAAGU AAAAGGCUAAC 4 Espèce 3 Espèce 4 Espèce 1 CUAAAAAAAAA Espèce 2 -AGG------- Espèce 3 AA-------GU Espèce 4 AA--GGCU--C
Trop d’information tue l’information Site 2 1 A U 3 Arbre #1 A A 2 A C 4 2 changements 1 A A 2 Arbre #2 A A 3 U C 4 2 changements 1 A A 2 Arbre #3 A A 4 C U 3 2 changements Les symplésiomorphies ne sont pas informatives (groupe paraphylétique)
Une substitution multiple AAAAAAAAAAA CAAAAAAAAAA CUAAAAAAAAA CAGGAAAAAAA 1 2 Espèce 1 Espèce 2 AAAAAAAAAAC AAAAAAAAAGU AAAAGGCUAAC 4 Espèce 3 Espèce 4 Espèce 1 CUAAAAAAAAA Espèce 2 -AGG------- Espèce 3 AA-------GU Espèce 4 AA--GGCU--C Arbre #1 Arbre #2 Arbre #3 1 3 1 2 1 2 2 4 3 4 4 3 L=11 L=12 L=12
Une substitution multiple : une convergence AAAAAAAAAAA CAAAAAAAAAA CUAAAAAAAAA CAGGAAAAAAA 1 2 Espèce 1 Espèce 2 AAAAAAAAAAC AAAGAAAAAGC AAAAGGCUAAC 4 Espèce 3 Espèce 4 Espèce 1 CUAAAAAAAAA Espèce 2 -AGG------- Espèce 3 AA-G-----GC Espèce 4 AA--GGCU--C Arbre #1 Arbre #2 Arbre #3 1 3 1 2 1 2 2 4 3 4 4 3 L=11 L=13 L=12 1+1+1+2+1+1+1+1+0+1+1 2+1+1+1+1+1+1+1+0+1+2
Deux substitutions multiples : convergence et réversion AAAAAAAAAAA CAAAAAAAAAA CUAAAAAAAAA CAGGAAAAAAA 1 2 Espèce 1 Espèce 2 AAAAAAAAAAC AAAGAAAAAAA AAAAGGCUAAC 4 Espèce 3 Espèce 4 Espèce 1 CUAAAAAAAAA Espèce 2 -AGG------- Espèce 3 AA-G------- Espèce 4 AA--GGCU--C Arbre 1 Arbre 2 Arbre 3 1 3 1 2 1 2 2 4 3 4 4 3 L=10 L=11 L=10
Trois substitutions multiples AAAAAAAAAAA CAAAAAAAAAA CUAAAAAAAAA GAAGAAAAAAA 1 2 Espèce 1 Espèce 2 AAAAAAAAAAC AAAGAAAAAAA AAAAGGCUAAC 4 Espèce 3 Espèce 4 Espèce 1 CUAAAAAAAAA Espèce 2 GA-G------- Espèce 3 AA-G------- Espèce 4 AA--GGCU--C Arbre 1 Arbre 2 Arbre 3 1 3 1 2 1 2 2 4 3 4 4 3 L=10 L=10 L=9
Vrai nombre de substitutions : 11 Homoplasie homoplasie : toute caractéristique présente chez deux espèces (ou plus) qui n'est pas présente chez leur ancêtre commun immédiat. Arbre 1 Arbre 2 Arbre 3 1 2 3 4 L=10 L=9 Les substitutions multiples impliquent une sous-estimation de la longueur de l’arbre Vrai nombre de substitutions : 11
Mesure de l’homoplasie Indice de Cohérence IC (Consistency Index, Kluge & Farris, 1969) Pour un site, IC = m/s m : nombre minimum de changements (= nombre d’états de caractères – 1) s : nombre de changements observés dans l’arbre le plus parcimonieux 1 A 2 C 3 C 4 C 5 A 6 T 7 T 8 T 9 C C CA CT TC 9 C 2 C 3 C 4 C 6 T 7 T 8 T 1 A 5 A s = 4 m = 2 C TA CT IC = 0.5
Mesure de l’homoplasie Indice de Cohérence IC (Consistency Index, Kluge & Farris, 1969) Pour un arbre, IC = M/S M : nombre minimum de changements pour tous les sites S : nombre total de changements dans l’arbre le plus parcimonieux Pour un site non informatif, m = s donc IC = 1 Indice de Cohérence excluant les sites non informatifs ICi ICi = Mi/Si Mi : nombre minimum de changements pour tous les sites informatifs Si : nombre total de changements dans l’arbre le plus parcimonieux pour les sites informatifs
Une substitution pour chaque union Algorithme récursif de Fitch C G A 1) Passage de bas en haut : x et y les fils du noeud n et X, Y, N les ensembles de nucléotides correpondant à ces noeuds C G A {C,G} Une substitution pour chaque union C G A {A,C} {A} {C,G} {A,C,G} C G A {A,C} {A} {C,G} C G A {A,C} {C,G}
Algorithme récursif de Fitch 2) Passage de haut en bas : C G A {A,C} {A} {C,G} {A,C,G} Choix arbitraire d’un nucléotide à la racine On assigne au fils x du noeud n : a X si a N n’importe quel nucléotide de X sinon C G A C G A C G A
Heuristiques de recherche de topologies Agglomération progressive des espèces Insertion sur toutes les branches Calcul du nombre de changements Choix de l’arbre le plus parcimonieux Nombre d’opérations : 3+5+7=15 (pour 105 arbres possibles) Pour 10 espèces : 63 versus 2 millions
Ordre d’agglomération des espèces B C D E F D F E C B A Ajouter les espèces de manière aléatoire Répéter l’opération un grand nombre de fois Choisir l’arbre le plus parcimonieux
Subtree Pruning and Regrafting (SPR) Algorithme de réarrangements Réarrangement local ou Nearest Neighbor Interchange (NNI) Y X W Z W X Y Z 2(n-3) possibilités Subtree Pruning and Regrafting (SPR) 2 1 3 4 5 6 2 1 3 4 5 6 4(n-3)(n-2) possibilités
Algorithme de réarrangements Tree Bisection and Reconnection (TBR) 2 1 3 4 5 6 Une branche est coupée 2 1 3 4 5 6 2 1 3 4 5 6 Toutes les reconnexions possibles sont testées Etc. (2n1-3)(2n2-2) possibilités/coupure
Algorithme exact du branch and bound Hendy et Penny (1982) Mathematical Biosciences, 60:133-142, 1982
Utilisation de contraintes a priori G2 G4 G3 G1 G5 G11 G9 G10 G8 G6 11 espèces : 24 106 45 espèces : 5 1064 G7
Maximum de parcimonie Deux étapes de minimisation : Pour un arbre donné, minimisation du nombre de changements nécessaires pour expliquer l’alignement Choix parmi tous les arbres possibles de celui ayant le plus petit nombre de changements
Robustesse des phylogénies : le test du bootstrap Tirage avec remise de n positions parmi n positions Construire l’arbre phylogénétique Répéter 1) et 2) un grand nombre de fois (1000) Analyser tous les arbres obtenus (en particulier via un arbre consensus)
L’arbre de consensus majoritaire F C A D B E F B A D C E F Etc. On calcule la fréquence d’apparition des différents groupements d’espèces E et F : 100% D, E et F : 93% A et B : 52% A et C : 48% C, E et F : 7% Construire l’arbre consensus B A C D E F 52% 93% 100%
Robustesse des phylogénies : le test du bootstrap Le tirage avec remise de positions, en respectant l’effectif original, revient à conférer un poids aléatoire aux positions Par exemple : 2 1 0 3 0 2 1 1 1 3 0 4 0 0 1 2 2 1 1 3 0 1 0 1 3 2 0 0 (à chaque tirage, un tiers des positions ne sont pas considérés) Le but du bootstrap est de “rejouer” l’évolution des sites. Il estime la robustesse d’un noeud pour un jeu de données et d’après une méthode de reconstruction Problèmes Très couteux en temps calcul Seuil de significativité (70%, 95%)
Si A est un groupe extérieur éloigné Attraction des longues branches A C A C q q p<q2 p B D B D Felsenstein, 1978 Si A est un groupe extérieur éloigné A D B C
Inconsistence de l’inférence phylogénétique Une méthode de reconstruction phylogénétique est dite inconsistente si elle converge vers un résultat faux quand il y a de plus en plus de données ATTENTION : un très bon support statistique (par ex. 100% de bootstrap) ne garantit pas que le noeud inféré est correct
Attraction des longues branches 10-2 10-6 (1-10-2) * (1-10-2) * (1-10-6) * (1-10-6) * (1-10-6) ≈ 0.98 10-2 * (1-10-2) * (1-10-6) * (1-10-6) * (1-10-6) ≈ 10-2 etc. ~10-6 ~10-4 ~2*10-8
Echantillonnage taxonomique Ajouter des espèces à l’analyse permet de mieux détecter les substitutions multiples Ajouter des espèces peut “casser les longues branches” et ainsi éviter l’artefact d’attraction des longues branches (Hendy et Penny, 1989)