CSI 4506: Introduction à l’Intelligence Artificielle

Slides:



Advertisements
Présentations similaires
Explorer un espace d’états
Advertisements

D.Gile statscrit1 LUTILISATION DES STATISTIQUES INFERENTIELLES DANS LA RECHERCHE : REFLEXIONS CRITIQUES
Algorithmes et structures de données avancés
Classification et prédiction
Recherche de motifs par méthodes exploratoires: Comparaisons de performances et statistiques sur le score.
DEFINITION DU CDMT Un processus transparent de planification financière et de préparation du budget visant à allouer les ressources aux priorités stratégiques.
Collecte de données F. Kohler.
Cours d’Algorithmique
Cours d'algorithmique 11 / Intranet 1 9 janvier 2006 Cours dAlgorithmique N P - complétude.
Cosmos/Works Les chargements type PALIER
Traitement Co-Séquentiel: Appariment et Fusion de Plusieurs Listes
INF L14 Initiation aux statistiques
To Tune or not to Tune? To Tune or not to Tune? A Lightweight Physical Design Alerter Costa Jean-Denis Le Yaouanc Aurélie Mécanismes de SGBD 2007.
UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE D’ORAN
Plus courts chemins On présente dans ce chapitre un problème typique de cheminement dans les graphes : la recherche d'un plus court chemin entre deux sommets.
Prise de décision dans les shooters TER 08/09 Sandrine Buendia
Les jeux (méthodes min-max et -)
ADR Active and Dynamic Routing. Plan Introduction au routage Les réseaux actifs Les agents Mise à jour des matrices de routage Architecture du routage.
MinMax et Alpha-Beta.
Heuristiques A. Introduction B. Recherche d ’une branche
Optimisation linéaire
DEA Perception et Traitement de l’Information
Les fichiers indexés (Les B-arbres)
Recherche de chemins de coût minimal avec l’algorithme A
Gestion de Fichiers Tri Interne Efficace et Tri Externe.
Le Jeu et l’intelligence artificielle
CSI 4506: Introduction à l'intelligence artificielle La recherche aveugle.
CSI 4506: Introduction à l’intelligence artificielle
1 CSI 4506: Introduction à lintelligence artificielle La recherche adversairiale.
Algorithmes d ’approximation
Optimisation dans les réseaux
Optimisation linéaire
BUT DU JEU Être le premier joueur à remplir sa tablette avec les six carreaux de mosaïque de couleur différente en répondant correctement aux questions.
Gestion de Fichiers GF-10: Traitement Co-Sequentiel: Appariment et Fusion de Plusieures Listes (Base sur les sections de Folk, Zoellick & Riccardi,
SEMINAIRE DE CONTACT novembre 2008 Outils de gestion de projet.
Structures de données IFT-2000 Abder Alikacem La récursivité Semaine 5 Département dinformatique et de génie logiciel Édition Septembre 2009.
Structures de données IFT-2000 Abder Alikacem La récursivité Département d’informatique et de génie logiciel Édition Septembre 2009.
Heuristiques C. Recherche de la meilleure branche . Branch And Bound
Géométrie épipolaire (deux vues)
Graphes 1. Introduction 2. Définition 3. Représentation mémoire
Dév. d’application interactive III Recherche de chemin.
Amélioration de la performance des SISR et de l’utilisation de l’information pour la gestion des systèmes de santé CESAG, Dakar, du 03 au 21 Mai 2010 Solutions.
Algorithmes Branch & Bound
Arbres binaires et tables de hachage
CSI 4506: Introduction à l’Intelligence Artificielle La Recherche Aveugle.
Cours 4 - Trois algorithmes de recherche dans un tableau
Le Taquin Mathieu Bernou Laurent Robin.
Intelligence Artificielle
GF-11: Tri Interne Efficace et Tri Externe
L’étude du mouvement.
Exploration systématique de graphes
IFT 615 – Intelligence artificielle Recherche heuristique
TIPE Les dames chinoises
CREATION D’ENTREPRISE
Présenté par : ABED Djemaa; BAKHOUIA Roqiya.
Simulation de contrat – Projet Freedom
Structures de données avancées : Arbres B+ avec expansion partielle D. E ZEGOUR Institut National d ’Informatique.
Chapitre 4 Variables aléatoires discrètes
1 Logiciels de confection automatique d’horaires.
Le Jeu et l’intelligence artificielle
Évolution de second ordre dans un algorithme évolutionnaire V. Lefort
Une action de sensibilisation au handicap à construire avec les élèves
CSI25101 Tri Plus efficace. CSI25102 Tri récursif Le tri récursif divise les données de grande taille en deux presque moitiés et est appelé récursivement.
1 CSI 4506: Introduction à l’Intelligence Artificielle La Recherche Adversariale.
Politique de placement Fondement de toute gestion de portefeuille, car elle définit : 1.Objectifs de placement 2.Contraintes 3.Stratégies admissibles 4.Allocation.
C9-1 Modèles décisionnels en gestion Introduction Les modèles linéaires La résolution des modèles linéaires continus La programmation linéaire en nombres.
Algorithmes Branch & Bound Module IAD/RP/RO Master d ’informatique Paris 6 Philippe Chrétienne.
1 A. Cornuéjols Introduction à l’intelligence artificielle Introduction à l’Intelligence Artificielle (Cours n°3) Recherche informée dans les graphes Antoine.
GEOMETRIE du cycle 1 au cycle 3 quelques pistes
Transcription de la présentation:

CSI 4506: Introduction à l’Intelligence Artificielle La Recherche Heuristique

Plan du Cours Recherche Heuristique: Description Un Example: Le puzzle de taille 8 Recherche Best-First Definitions et Terminologie Examples

Recherche Heuristique: Description Dans la recherche aveugle, on performe un exploration exhaustive des objets de l’espace de recherche: Aucune information n’est utilisee pour guider la recherche. Dans la recherche heuristique, de l’information sur la structure de l’espace de recherche est utilisee. En particulier, on suppose l’existence d’une mesure sur les objets de l’espace qui nous permet d’estimer la distance d’un noeud a un noeud final. On utilise cette mesure pour comparer deux noeuds de facon a determiner le noeud le plus prometteur qui devrait etre explore le premier.

Example: Le puzzle a 8 Pieces Noeud de depart Noeud final 2 8 3 1 6 4 7 <Blanc> 5 1 2 3 8 <Blanc> 4 7 6 5 Mouvements Legaux: Deplace le <blanc> vers: - le haut - la droite - le bas - la gauche Contraintes: Les mouvements en diagonal sont interdits

A Noter Certains mouvements sont stupides: Example: Glisser 5 dans l’espace vide Certains mouvements sont plus avises: Example: Glisser 6 dans l’espace vide  On peut utiliser une fonction d’evaluation pour guider la recherche.

Examples de fonctions d’evaluation pour le puzzle a 8 pieces f1(n) = g(n) + W(n) f2(n) = g(n) + P(n)  Meilleure estimation (vis a vis du nombre d’etapes avant le but) g(n) = profondeur du noeud n dans l’arbre de recherche W(n) = nombre de carres mal places dans ce noeud P(n) = somme des distances “manhattan” de chaque carre par rapport a leur destination finale [sans prendre compte des obstacles] g(n) est important puisque l’on cherche le chemin le plus court! Avec

Examples de fonctions d’evaluation pour le puzzle a 8 pieces (Cont.) 2 8 3 1 6 4 7 <> 5 1 2 3 8 <> 4 7 6 5 f1(n) = g(n) + W(n) = 0 + 4 = 4 f2(n) = g(n) + P(n) = 0 + 1 + 1 + 1 + 2 = 5 Une solution optimale prend 5 mouvements f2 est en effet une meilleure estimation que f1

Note Dans la vie reelle on utilise aussi des heuristique: Example: Au supermarche, on choisit la queue la moins longue ou alors on choisit la queue dans laquelle les clients on le plus petit nombre d’objets dans leur panier. Avez-vous d’autres exemples?

Recherche Best-First (Voir Example au Tableau; On suppose qu’il n’y a pas de noeud final dans cet arbre) N = A n=A N =   N= C->B n=C N = B  N= G->F->B n=G N= F->B  N= F->B n=F N= B  N= B n=B N =   N= E->D n=E N= D  N= D n=D N=   N=  Ordre de la visite

Examples sur le Puzzle a 8 pieces Voir diapositives: 2 problemes differents 2 fonctions d’evaluation differentes

Notes Les resultats de la recherche dependent du choix de la fonction d’evaluation L’utilisation d’une fonction d’evaluation qui sous-estime la promesse de certains noeuds peut amener un chemin a cout non minimal Par ailleurs, l’utilisation d’une fonction d’evaluation qui sur-estime la promesse de certains noeuds peut amener a une expansion de trop de noeuds. Est-il possible d’obtenir des garanties sur nos fonctions d’evaluation?

Definitions et Terminologie Algorithme A Admissibilite Algorithme A* Monotonicite Informativite a.k.a. pouvoir heuristique Tous ces termes seront definis et expliques en cours. Veuillez lire attentivement les sections 4.0-4.2

Examples (1) Question: Est-ce que la fonction W(n) du puzzle a 8 pieces est admissible? Reponse: Oui, car W(n) est une sous-estimation de h*(n) puisque les carres qui ne sont pas a leur destination finale ont besoin d’au moins un mouvement, et probablement plus. Question: Est-ce que la fonction P(n) du puzzle a 8 pieces est admissible? Reponse: Oui, car P(n) est une sous-estimation de h*(n) puisque les carres qui se trouvent a une distance “manhattan” d de leur destination finale ont besoin d’au moins d mouvements, et peut-etre plus.

Examples (2) Parfois du pouvoir heuristique peut etre gagne au depends de l’admissibilite en utilisant une fonction h’ qui n’est pas plus petite que h. Ce pouvoir heuristique gagne peut nous permettre de resoudre des problemes bien plus difficiles. Example: h’(n) = P(n) + 3 S(n) P(n) distance “manhattan” de la position finale S(n) Score sequentiel obtenu en verifiant les carres non-centraux un par un et en distribuant 2 a tous les carres qui ne sont pas suivis de leus successeur adequat et 0 a tous les autres carres. Un carre au milieu a un score de 1.