Les propriétés des exposants am x an = am+n Am / an = am-n 3) (am)n= amxn 4) (a x b)m = am x bm 5) (a/b)m = am/bm
Exemples des propriétés des exposants 1) a) 22 x 2³ = 2²+3= 25= 32 b) 2³ X 2³ = 23+3=26= 64 2) A) 25/ 22 = 23= 8 b) 26/ 24 = 2²= 4 3 a) (23)2 = 2 3x2 = 26 = 64 b) (42)3 = 4 2x3 = 46 = 4096 4 a) ( 5x2)3 = 53 x 23 = 1000 b) ( 7x3)2 = 72 x 32 = 441 5 a) (12/6)2 = 122 / 62 = 4 b) (80/10)3= 803 / 103 = 512
La définition des mots de vocabulaires reliés à l’algèbre Expression algébrique :Les expressions algébriques font intervenir des opérations et des lettres qui représentent des nombres. Effectuer un calcul algébrique consiste à transformer une expression en une autre qui lui est égale. Variable: C’est la lettre dans un terme algébrique. Coefficient: C’est le chiffre dans un terme algébrique. Terme algébrique: Un terme algébrique ou un monôme est constitué d’un coefficient et d’un groupe variable. Terme constant: C’est un chiffre qui se retrouve tout seul dans un terme algébrique. Terme semblables: Des termes semblables sont des termes qui ont le même groupe variable. Polynôme: Expression algébrique qui comporte un ou plusieurs termes. Monôme: Expression algébrique qui comporte un seul terme Binôme :Expression algébrique qui comporte deux termes Trinôme: Expression algébrique qui comporte trois termes
L’addition de polynômes Démarche : Additionner les termes semblants Ex: (3x+5d) et (x+3d) = 4x+8d Ex: (4x-5y) et (-7x + 7y) = -3x + 2y
Soustractions de polynômes Démarche: Soustraire les termes semblants Ex : (3x +12) – (2x-8) = x+4 Ex: (2x2 + 3x) – (x2-2x) = x2 + x
Multiplication de polynômes Démarche :La multiplication de polynômes donne l’addition des deux exposants par ex : Ex:2 (3x + 4) = 6x + 8 Ex : 2x(3x + 4)= 6x2 + 8x
Division de polynômes La soustraction de polynômes donne la soustraction des deux exposants par ex : Ex: (10x + 2) / 2 = 5x+3 Ex: (12x3 + 8x2) ÷ 2x = 6x2 + 4x