Laboratoire de Conception et d’Intégration des Systèmes (LCIS) Valence Contribution au développement de Tags RFID, en UHF et Microondes, sur matériaux plastiques Delphine BECHEVET Directeur de thèse : Smaïl TEDJINI Co-directeur de thèse : Tan-Phu VUONG Good afternoon every body! I'll present you the paper titled "Design and Measurements of Antennas for RFID, Made by Conductive Ink on Plastics", written by myself, Tan-phu Vuong and Pr.Smaïl Tedjini. Our lab is involved in developing wireless center with other companies and organization. We carry out complete studies and works, from idea to help to products realization and validation; finally results are recognized as good qualities one. Our lab is located at Valence, south of France, and you can contact us as written below. Laboratoire de Conception et d’Intégration des Systèmes (LCIS) Valence
Partenaires et financement I would like first to present our partners because thanks to them, we have had the opportunity to go from design and simulation to realization and measurements. In this project, in which our lab is leader, we count company, semi-public lab, and organization. The first one presents major skills in transforming plastics, but also in silk-screen printing. The second one, the cea-leti, helps us by furnishing equipment to measure conductive parameters. The last one, the organization, realizes a technological keeping watch to always stay up to date, and to know what’s going on, on the RFID market.
Vous avez dit "TAG"? Les codes à barres: étiquettes passives Tags RFID : étiquettes intelligentes Sans contact Communication à distance sans besoin de visibilité Identification de plusieurs objets et en volume Possibilité d'écrire des données
SOMMAIRE (1/2) Constitution d’un tag RFID Contexte Principe de fonctionnement général Objectifs Méthodologie mise en place Caractérisation des matériaux pour antennes Propriétés magnétiques Propriétés diélectriques Propriétés conductrices
SOMMAIRE (2/2) Antennes à bas-coût Conception Réalisation Comparaison mesures – simulation Démonstrateur de tag RFID à bas-coût Miniaturisation Intégration Résultats
Contexte : RFID Quelques domaines d'applications RFID Alimentaire / Santé Validation de la chaîne du froid Services vétérinaires Suivi des données des animaux domestiques Transports Suivi de marchandises Quelques domaines d'applications RFID Transports (humains) En commun Autoroutiers Industrie Gestion de stocks Constitution d'un tag RFID (1/6) Justice / Sécurité Pers.liberté conditionnelle Vol, contrefaçon Papiers ID, billets banque
Principe de fonctionnement général(1/2) Communication Couverture de lecture et d'écriture Antenne pour la lecture et l'écriture Energie et commande Actif Tag Passif Données 14983750 Constitution d'un tag RFID (2/6) Appareil de lecture et d'écriture Application
Principe de fonctionnement général(2/2) Les fréquences Valeurs maximales du champ f 125 kHz 13.56 MHz 433.92 ~900 2.45 GHz 5.8 λ/2 1.2 km 11 m 35 cm 16 cm 6 cm 2.5 cm Distance de lecture Bande de fréquences (MHz) Valeur imposée par la norme 13.560 42 dB.µA / m @ 10 m 433.92 1-10 mW ERP 869.000 100 – 2 000 mW EIRP 2450.000 500 – 4 000 mW EIRP 5800.000 25 mW EIRP Champ proche Champ lointain Constitution d'un tag RFID (3/6) ERP = Equivalent Radiated Power EIRP = Effective Isotropic Radiative Power
Objectif 1 : tag à bas-coût Substrat Puce électronique Connexion Antenne : conducteur sur substrat Constitution d'un tag RFID (4/6) f = 13.56 MHz f ~900 MHz à bas-coût
Objectif 1bis : antenne à bas-coût Substrat Plastiques Conducteur Matières "non nobles" Méthode de réalisation Industrielle À 900 MHz 2.45 GHz (5.8 GHz) Constitution d'un tag RFID (5/6) Propriétés matériaux Fonctionnement de l'antenne! Peu ou pas connues
Méthodologie mise en place Caractérisation des paramètres du: substrat conducteur Conception d’antenne simple Réalisation d’antennes Mesure de la géométrie des antennes Mesure des paramètres d’antennes Modélisation Comparaison So, low-cost constraints means that we have to choose other materials than Duroid for example and copper, or other noble materials. We have also to avoid technological solutions to deposit conductive materials, such as PVD, used in micro industry. So, plastics seem to be good candidates to become substrates; BUT, there are so many kind of plastics and so many grades for one sample that it’s easy to get lost! Besides, while searching for dielectric constant for vulgar plastics, we found data sheets parameters with at 100MHz-maximum frequency! It can give us an idea but it ‘s still far from parameters at 2.45GHz! So we propose some plastics, which were selected for their low dielectric loss factor, to our partner. This last one gave us 9 plastics in response. And so we built up a method: 1st, to set up a characterization method, so that we can take into account of substrates dielectric parameters while designing, Then make them realize by our partner, then measure the conductive properties, thanks to the other partner. It’s useful to measure the shape deposited, in order to compare more accurately simulation and measurements. And don’t forget that the main purpose is to integrate low-cost antennas in system. Constitution d'un tag RFID (6/6) OUI NON Miniaturisation d'antennes Intégration d’antennes à bas-coût dans un système RFID
Paramètres du substrat Perméabilité magnétique Permittivité diélectrique Facteur de pertes diélectriques Permittivité diélectrique complexe Motif d'antenne Caractérisation des matériaux (1/12) So because of the accuracy of EM cavity, we chose to measure substrates parameters with the small perturbations method; You can see on the left, side view picture from our cavity, realized in brass; and on the right, a top view of the opened cavity, with plastic sample inserted; you can also see little loops to excite modes. First dimensions of the cavity were, in mm, 200 x 100 x 26; but we added some pieces of brass to increase the cut-off frequency and the measurements range; and so the resulting dimensions are, always in mm, 150 x 75 x 26 Efficacité de rayonnement de l'antenne
Choix des matériaux pour le substrat Facteur de pertes diélectriques le plus petit possible (ref. matériaux RF) : tanδ ~10-3 Base de données Partenaires 9 matériaux disponibles ABS (Acrylonitrile Butadiène Styrène) PA6 et 12 (PolyAmide) PBT (PolyButhylène Téréphtalate) PC (PolyCarbonate) PE, LD et HD (PolyEthylène) PMMA (PolyMéthyle Méthacrylate) PS (PolyStyrène) Caractérisation des matériaux (2/12) So because of the accuracy of EM cavity, we chose to measure substrates parameters with the small perturbations method; You can see on the left, side view picture from our cavity, realized in brass; and on the right, a top view of the opened cavity, with plastic sample inserted; you can also see little loops to excite modes. First dimensions of the cavity were, in mm, 200 x 100 x 26; but we added some pieces of brass to increase the cut-off frequency and the measurements range; and so the resulting dimensions are, always in mm, 150 x 75 x 26
Propriétés magnétiques Mesure de la perméabilité Caractérisation des matériaux (3/12) So because of the accuracy of EM cavity, we chose to measure substrates parameters with the small perturbations method; You can see on the left, side view picture from our cavity, realized in brass; and on the right, a top view of the opened cavity, with plastic sample inserted; you can also see little loops to excite modes. First dimensions of the cavity were, in mm, 200 x 100 x 26; but we added some pieces of brass to increase the cut-off frequency and the measurements range; and so the resulting dimensions are, always in mm, 150 x 75 x 26
Propriétés diélectriques (1/5) Mesure de la permittivité Cavité électromagnétique (EM) Échantillon Caractérisation des matériaux (4/12) So because of the accuracy of EM cavity, we chose to measure substrates parameters with the small perturbations method; You can see on the left, side view picture from our cavity, realized in brass; and on the right, a top view of the opened cavity, with plastic sample inserted; you can also see little loops to excite modes. First dimensions of the cavity were, in mm, 200 x 100 x 26; but we added some pieces of brass to increase the cut-off frequency and the measurements range; and so the resulting dimensions are, always in mm, 150 x 75 x 26 Cavité fermée, vue de côté Cavité ouverte, vue de dessus
Propriétés diélectriques (2/5) Mesure de la permittivité : Cavité EM: simulation entre 2 et 3 GHz m n p fr théorique (GHz) Mode 101 1 2.26025 Mode 102 2 2.8476 Caractérisation des matériaux (5/12) You can see on the figure the two first TE modes: TE101 and TE102. The red curve is the S21-parameter in dB, versus frequency when cavity is empty; whereas two other curves, blue and green, are related to cases where cavity is partially filled by different samples: the green one is duroid, for which we already know its parameters. So, we use shifts of frequency and S21 parameter for a same mode. This method lies on the fact that sample’s volume has to be enough small to assume in equations that the electric field is not changed
Propriétés diélectriques (3/5) Nécessité de calibrer : Mesure de la permittivité : méthode des petites perturbations Cavité EM : simulation entre 2 et 3 GHz Nécessité de calibrer : matériau de référence Caractérisation des matériaux (6/12) You can see on the figure the two first TE modes: TE101 and TE102. The red curve is the S21-parameter in dB, versus frequency when cavity is empty; whereas two other curves, blue and green, are related to cases where cavity is partially filled by different samples: the green one is duroid, for which we already know its parameters. So, we use shifts of frequency and S21 parameter for a same mode. This method lies on the fact that sample’s volume has to be enough small to assume in equations that the electric field is not changed
Propriétés diélectriques (4/5) Mesure de la permittivité : méthode des petites perturbations Cavité EM : mesures entre 2 et 3 GHz Δf TE102 ΔS21 TE101 Caractérisation des matériaux (7/12) You can see on the figure the two first TE modes: TE101 and TE102. The red curve is the S21-parameter in dB, versus frequency when cavity is empty; whereas two other curves, blue and green, are related to cases where cavity is partially filled by different samples: the green one is duroid, for which we already know its parameters. So, we use shifts of frequency and S21 parameter for a same mode. This method lies on the fact that sample’s volume has to be enough small to assume in equations that the electric field is not changed
Propriétés diélectriques (5/5) Matériau de référence: Mesure de la permittivité : méthode des petites perturbations Cavité EM : exploitation à 2.45 GHz Matériau de référence: duroïd ε'=3.5 , tanδ = 1.8x10-3 Plastique HDPE LDPE PC ABS PMMA PA12 PA6 PBT PS ε’ @2.45GHz 2.16 2.1 2.64 2.53 2.47 2.88 2.81 2.82 2.38 tanδx10-3 1 1.7 1.8 2.4 2.5 2.9 3.5 6 Caractérisation des matériaux (8/12) And so wanted equations come, in two complex parts: The first one, the relative part of the permittivity, is function of the ratio of both volumes seen before and function of frequency gap The 2nd equation, the imaginary part of the permittivity, is still function of volumes, but also function of scattered parameters S21 Finally, we obtain the dielectric loss factor as the ratio of imaginary part above real part of the permittivity All equations are function of frequency. So after tests of 9 plastics, we focus our work on sample 3 and sample 8 Sample 3 presents good dielectric parameters compare to #8 but, its behavior, while depositing conductor, is less “easy” than #8, which is more hydrophobic This last parameter could be a problem on papers….
Suivi de la méthodologie Caractérisation des matériaux: substrat conducteur Conception d’antenne simple Réalisation d’antennes Mesure de la géométrie des antennes Mesure des paramètres d’antennes Modélisation Comparaison Caractérisation des matériaux (9/12) So, low-cost constraints means that we have to choose other materials than Duroid for example and copper, or other noble materials. We have also to avoid technological solutions to deposit conductive materials, such as PVD, used in micro industry. So, plastics seem to be good candidates to become substrates; BUT, there are so many kind of plastics and so many grades for one sample that it’s easy to get lost! Besides, while searching for dielectric constant for vulgar plastics, we found data sheets parameters with at 100MHz-maximum frequency! It can give us an idea but it ‘s still far from parameters at 2.45GHz! So we propose some plastics, which were selected for their low dielectric loss factor, to our partner. This last one gave us 9 plastics in response. And so we built up a method: 1st, to set up a characterization method, so that we can take into account of substrates dielectric parameters while designing, Then make them realize by our partner, then measure the conductive properties, thanks to the other partner. It’s useful to measure the shape deposited, in order to compare more accurately simulation and measurements. And don’t forget that the main purpose is to integrate low-cost antennas in system. Miniaturisation d'antennes Intégration d’antennes à bas-coût dans un système RFID
Propriétés conductrices (1/3) Mesure de l'épaisseur et de la conductivité Épaisseur h max h moyenne h min Caractérisation des matériaux (10/12) Because of substrates surface parameters, there exists a gap between the design and realization; more than that, height and conductivity of ink deposited are unknown. So in order to fit simulation and measurements of antennas, we measured height and resistance square. On the left you can see the surface profilometer we used. It gives plot as shown and helps to evaluate an average height On the right, here is the 4-tips equipment: pen with 4 tips and the measurement equipment. The left circle focused on a geometric intrinsic parameter, and the right one, the searching value.
Propriétés conductrices (2/3) Mesure de l'épaisseur et de la conductivité Conductivité (S.m-1) = R (Ω) Caractérisation des matériaux (11/12) So the pen presents at its end, 4 tips: the two extremes provide current and the two other in the middle take voltage. The ratio of voltage above current is a resistance and depends on the distance between tips (which is comprised in the geometric factor K, in orange circle), the resistivity and material height. The ratio resistivity above height is called resistance square, inside green circle. So measuring resistance square and height gives us resistivity with wich we calculate skin depth and conductivity. We remain that skin depth is square root of resistivity above frequency, pi and mu_zero; conductivity is the inverse of resistivity. Let’s note that ink’s height has to exceed its skin depth, to be in the best conditions as possible; otherwise we should provide more power for same results. (m) = R x h (Ω.m)
Propriétés conductrices (3/3) Mesure de la conductivité d'encre déposée 1er groupe d'encre conductrice sur plastiques 2nd groupe d'encre conductrice sur plastiques Échantillon PBT1 PBT2 PC5 PC6 h (µm) 15 14 16 σ x104 (S.cm-1) 2.17 5.42 2.81 3.19 δ (µm) 7.04 4.46 6.19 5.94 Échantillon PC5 PC6 PC7 PC8 hmin (µm) 4.73 5.25 5.96 3.79 hmax (µm) 20 18 17 σ x104 (S.cm-1) 2.04 1.67 1.49 1.52 δ (µm) 7.11 7.88 8.33 8.24 Caractérisation des matériaux (12/12) So here are presented some results on two groups of antennas; For the first one, a standard cloth mesh has been used; we see on the second line the height average in microns, on the third line the calculated conductivity and on the last one, you see the skin depth with values , for most of samples, below the height of the ink… we consider this conductivity good for a non-noble conductor. For the second, the cloth mesh has been reduce to get deposit accuracy, but, while measuring, it appears difficult to find height’s average of the ink, so inhomogeneous its profile is, I mean there is a big difference between minimum and maximum of height. So, for some parts of the patch, the height does not exceed the skin depth, providing damping for the radiation of antennas Référence: σCu = 5.88x105 S.cm-1
Suivi de la méthodologie Caractérisation des matériaux: substrat conducteur Conception d’antenne simple Réalisation d’antennes Mesure de la géométrie des antennes Mesure des paramètres d’antennes Modélisation Comparaison So, low-cost constraints means that we have to choose other materials than Duroid for example and copper, or other noble materials. We have also to avoid technological solutions to deposit conductive materials, such as PVD, used in micro industry. So, plastics seem to be good candidates to become substrates; BUT, there are so many kind of plastics and so many grades for one sample that it’s easy to get lost! Besides, while searching for dielectric constant for vulgar plastics, we found data sheets parameters with at 100MHz-maximum frequency! It can give us an idea but it ‘s still far from parameters at 2.45GHz! So we propose some plastics, which were selected for their low dielectric loss factor, to our partner. This last one gave us 9 plastics in response. And so we built up a method: 1st, to set up a characterization method, so that we can take into account of substrates dielectric parameters while designing, Then make them realize by our partner, then measure the conductive properties, thanks to the other partner. It’s useful to measure the shape deposited, in order to compare more accurately simulation and measurements. And don’t forget that the main purpose is to integrate low-cost antennas in system. Miniaturisation d'antennes Intégration d’antennes à bas-coût dans un système RFID
Conception d'antennes patch rectangulaires(1/3) Pré-calculs : utilisation de formules analytiques Knowing these parameters, we design the more simple planar antennas: rectangular patch. We use for this, CST microwave studio: First steps are to load substrates parameters like permittivity and loss factor at 2.45GHz, and to define background material (for us it will be the air). Next step is to define boundary conditions. In our case, it’s everywhere open except in z min, where it’s electric, because of ground plane. Then comes design phases: rectangular patch with matching notch; then before let running the solver we have to take care on the size of mesh-cells Dimensions on substrate #3 are, in mm, 36.65 for the length, 46 for the width and 22.59 for the whole length of excitation line and notch. Adaptation à 50Ω Antennes à bas-coût (1/12)
Conception d'antennes patch rectangulaires(2/3) Optimisation de la géométrie, adaptation : CST Microwave Studio Intégration des paramètres mesurés : ε’, tanδ, σ Plastique PC (PolyCarbonate) Knowing these parameters, we design the more simple planar antennas: rectangular patch. We use for this, CST microwave studio: First steps are to load substrates parameters like permittivity and loss factor at 2.45GHz, and to define background material (for us it will be the air). Next step is to define boundary conditions. In our case, it’s everywhere open except in z min, where it’s electric, because of ground plane. Then comes design phases: rectangular patch with matching notch; then before let running the solver we have to take care on the size of mesh-cells Dimensions on substrate #3 are, in mm, 36.65 for the length, 46 for the width and 22.59 for the whole length of excitation line and notch. Antennes à bas-coût (2/12)
Conception d'antennes patch rectangulaires(3/3) Résultats: S11, BP, G, D, efficacité Plastique PC (PolyCarbonate) Plastique PBT (PolyButylène Téréphtalate) ~4dB Seuil (normalisé) Results give radiation chart in 3D, on the right in polar plot and on the right in space plot. We can have directivity, and gain; so for our case, we present a 6.5dB gain at 2.45GHz and a directivity around 7 dBi. Antennes à bas-coût (3/12) BP
Suivi de la méthodologie Caractérisation des matériaux: substrat conducteur Conception d’antenne simple Réalisation d’antennes Mesure de la géométrie des antennes Mesure des paramètres d’antennes Modélisation Comparaison So, low-cost constraints means that we have to choose other materials than Duroid for example and copper, or other noble materials. We have also to avoid technological solutions to deposit conductive materials, such as PVD, used in micro industry. So, plastics seem to be good candidates to become substrates; BUT, there are so many kind of plastics and so many grades for one sample that it’s easy to get lost! Besides, while searching for dielectric constant for vulgar plastics, we found data sheets parameters with at 100MHz-maximum frequency! It can give us an idea but it ‘s still far from parameters at 2.45GHz! So we propose some plastics, which were selected for their low dielectric loss factor, to our partner. This last one gave us 9 plastics in response. And so we built up a method: 1st, to set up a characterization method, so that we can take into account of substrates dielectric parameters while designing, Then make them realize by our partner, then measure the conductive properties, thanks to the other partner. It’s useful to measure the shape deposited, in order to compare more accurately simulation and measurements. And don’t forget that the main purpose is to integrate low-cost antennas in system. Antennes à bas-coût (4/12) Miniaturisation d'antennes Intégration d’antennes à bas-coût dans un système RFID
Réalisation d'antennes Dépôt d'encre conductrice sur plastique : sérigraphie 46 mm 38.22 mm So one this done, we make it realize by silk-screen printing thanks to our partner Gaggione: they prepare cloth screen and deposit, thru it, conductive ink on plastic. And so results are: (antennas pictures) Antennes à bas-coût (5/12)
Suivi de la méthodologie Caractérisation des matériaux: substrat conducteur Conception d’antenne simple Réalisation d’antennes Mesure de la géométrie des antennes Mesure des paramètres d’antennes Modélisation Comparaison So, low-cost constraints means that we have to choose other materials than Duroid for example and copper, or other noble materials. We have also to avoid technological solutions to deposit conductive materials, such as PVD, used in micro industry. So, plastics seem to be good candidates to become substrates; BUT, there are so many kind of plastics and so many grades for one sample that it’s easy to get lost! Besides, while searching for dielectric constant for vulgar plastics, we found data sheets parameters with at 100MHz-maximum frequency! It can give us an idea but it ‘s still far from parameters at 2.45GHz! So we propose some plastics, which were selected for their low dielectric loss factor, to our partner. This last one gave us 9 plastics in response. And so we built up a method: 1st, to set up a characterization method, so that we can take into account of substrates dielectric parameters while designing, Then make them realize by our partner, then measure the conductive properties, thanks to the other partner. It’s useful to measure the shape deposited, in order to compare more accurately simulation and measurements. And don’t forget that the main purpose is to integrate low-cost antennas in system. Antennes à bas-coût (6/12) Miniaturisation d'antennes Intégration d’antennes à bas-coût dans un système RFID
Δ |simulation – mesure| Mesures d'antennes (1/5) Plastique PC – EC-Ag, 1er groupe 22.5° 11.25° 0° Paramètres Simulation Mesure Δ |simulation – mesure| S11 (dB) -22.83 -22.62 0.21 BP (%) 1.23 1.53 0.3 ROS 1.155 1.160 0.005 f (GHz) 2.366 2.295 71 MHz G (dB) 6.466 2.291 4.175 Seuil Here are 2 pictures of the measurement bench realized by myself, with bench and antennas stands: so you can see full of things radiating around… on the right you can see the circle for which there are holes every 22.5°, starting at 11.25° for the upper part and 0 for the downer part; so I collected measurement points every 11.25°, from -90 to +90 °. While measuring in transmission, gives the S21 parameter; on left side you have S21 in DB versus frequency for ϕ =0°, which is maximum transmission; and on the right side, you have normalized S21, always in dB, versus the angle ϕ. Antennes à bas-coût (7/12)
Mesures d'antennes (2/5) Décalage fréquentiel: prise en compte des incertitudes Antennes à bas-coût (8/12)
Mesures d'antennes (3/5) GAIN d'antenne sur PC : Simulation : 6.47 dB And if we compare antennas from the first group than those from the second (the difference is the height of conductive ink), that appears, for S11 parameter, a 10dB-difference; and in general, parameters from first group are better than those of the second. We verified this by make realize another antennas group with the first cloth mesh. We used the two-antenna method to measure the absolute gain; Antennas were 0.96m separated. GAIN d'antenne sur PC : Simulation : 6.47 dB Mesure environnement bruité : 2.29 dB Mesure chambre anéchoïde : 5.75 dB Antennes à bas-coût (9/12)
Mesures d'antennes (4/5) Plastique PC-EC-Ag 1er groupe 2nd groupe Seuil Seuil Plastique PC 1er groupe 2nd groupe S11(dB) -22.62 -13.19 S21 (dB) -34.39 -34.71 ROS 1.16 1.56 G (dB) 2.48 2.29 BP(%) 1.53 0.96 And if we compare antennas from the first group than those from the second (the difference is the height of conductive ink), that appears, for S11 parameter, a 10dB-difference; and in general, parameters from first group are better than those of the second. We verified this by make realize another antennas group with the first cloth mesh. We used the two-antenna method to measure the absolute gain; Antennas were 0.96m separated. Antennes à bas-coût (10/12)
Mesures d'antennes (5/5) Autres matières conductrices Encre Carbone (σ~1 S.cm-1) Ruban adhésif en aluminium, colle non-conductrice (RA-Al) Ruban adhésif en cuivre, colle conductrice (RA-Cu) Seuil Seuil And if we compare antennas from the first group than those from the second (the difference is the height of conductive ink), that appears, for S11 parameter, a 10dB-difference; and in general, parameters from first group are better than those of the second. We verified this by make realize another antennas group with the first cloth mesh. We used the two-antenna method to measure the absolute gain; Antennas were 0.96m separated. Antennes à bas-coût (11/12)
Bilan des antennes étudiées EC-Ag1 EC-Ag2 EC-C RA-Al RA-Cu Facilité de réalisation / Coût h > δ (µm) Bonne conductivité (σ > 104 S.cm-1) Paramètres de réflexion (ROS < 2) Gain > 2 dB And if we compare antennas from the first group than those from the second (the difference is the height of conductive ink), that appears, for S11 parameter, a 10dB-difference; and in general, parameters from first group are better than those of the second. We verified this by make realize another antennas group with the first cloth mesh. We used the two-antenna method to measure the absolute gain; Antennas were 0.96m separated. Antennes à bas-coût (12/12) Ec-Ag = Encre conductrice Argent Ec-C = Encre conductrice Carbone Ra-Al = Ruban adhésif Aluminium Ra-Cu = Ruban adhésif Cuivre
Suivi de la méthodologie Caractérisation des matériaux: substrat conducteur Conception d’antenne simple Réalisation d’antennes Mesure de la géométrie des antennes Mesure des paramètres d’antennes Modélisation Comparaison So, low-cost constraints means that we have to choose other materials than Duroid for example and copper, or other noble materials. We have also to avoid technological solutions to deposit conductive materials, such as PVD, used in micro industry. So, plastics seem to be good candidates to become substrates; BUT, there are so many kind of plastics and so many grades for one sample that it’s easy to get lost! Besides, while searching for dielectric constant for vulgar plastics, we found data sheets parameters with at 100MHz-maximum frequency! It can give us an idea but it ‘s still far from parameters at 2.45GHz! So we propose some plastics, which were selected for their low dielectric loss factor, to our partner. This last one gave us 9 plastics in response. And so we built up a method: 1st, to set up a characterization method, so that we can take into account of substrates dielectric parameters while designing, Then make them realize by our partner, then measure the conductive properties, thanks to the other partner. It’s useful to measure the shape deposited, in order to compare more accurately simulation and measurements. And don’t forget that the main purpose is to integrate low-cost antennas in system. Miniaturisation d'antennes Intégration d’antennes à bas-coût dans un système RFID
Miniaturisation d'antennes (1/6) Pourquoi miniaturiser? Taille élevée: f ~900 MHz => λ/2 ~15 cm (!!!) Antenne = motif conducteur sur substrat Miniaturisation Motif Fractales Repliement de dipôles Substrat Matériau à forte permittivité Utilisation de matériaux composites main droite (RH)-main gauche (LH): CRLH-M Démonstrateur de tag RFID à bas-coût (1/11) And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity
Miniaturisation d'antennes (2/6) Matériaux CRLH RH : ε > 0, μ > 0 LH : ε < 0, μ < 0 RH RH RH LH Démonstrateur de tag RFID à bas-coût (2/11) RH RH And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity RH LH
Miniaturisation d'antennes (3/6) Matériaux CRLH LR CR CL LL LR CL CR LL Patch Démonstrateur de tag RFID à bas-coût (3/11) Substrat CR LL Via And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity Plan de masse
Miniaturisation d'antennes (4/6) Matériaux CRLH Démonstrateur de tag RFID à bas coût (4/11) Rayon du via de RPA (mm) f (GHz) S11 (dB) D (dBi) G (dB) er (%) et (%) Sans via 2.4159 -26.18 7.702 7.381 92.88 92.65 1.5 1.1466 -2.37 3.822 1.854 63.55 26.79 1.0 1.0566 -2 2.874 0.5261 58.24 21.49 And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity
Miniaturisation d'antennes (5/6) Matériaux CRLH f (GHz) S11 (dB) G (dB) Non replié r = 0.2 mm 1.298 -13.03 3.143 Replié r = 0.20 mm 0.983 -13.24 2.462 Replié r = 0.12 mm 0.954 -17.98 2.376 Replié r = 0.10 mm 0.942 -16.92 2.297 Démonstrateur de tag RFID à bas-coût (5/11) And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity
Miniaturisation d'antennes (6/6) Méthode de miniaturisation Forme Rétrécissement (%) Géométrie fractale 25 Fente à ruban conducteur 41 CRLH-M 44 Dipôle replié 61 Démonstrateur de tag RFID à bas-coût (6/11) And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity
Suivi de la méthodologie Caractérisation des matériaux: substrat conducteur Conception d’antenne simple Réalisation d’antennes Mesure de la géométrie des antennes Mesure des paramètres d’antennes Démonstrateur de tag RFID à bas-coût (7/11) Modélisation Comparaison So, low-cost constraints means that we have to choose other materials than Duroid for example and copper, or other noble materials. We have also to avoid technological solutions to deposit conductive materials, such as PVD, used in micro industry. So, plastics seem to be good candidates to become substrates; BUT, there are so many kind of plastics and so many grades for one sample that it’s easy to get lost! Besides, while searching for dielectric constant for vulgar plastics, we found data sheets parameters with at 100MHz-maximum frequency! It can give us an idea but it ‘s still far from parameters at 2.45GHz! So we propose some plastics, which were selected for their low dielectric loss factor, to our partner. This last one gave us 9 plastics in response. And so we built up a method: 1st, to set up a characterization method, so that we can take into account of substrates dielectric parameters while designing, Then make them realize by our partner, then measure the conductive properties, thanks to the other partner. It’s useful to measure the shape deposited, in order to compare more accurately simulation and measurements. And don’t forget that the main purpose is to integrate low-cost antennas in system. Miniaturisation d'antennes Intégration d’antennes à bas-coût dans un système RFID
Intégration antenne – puce (1/2) Principe: rétromodulation ("backscattering") Modulation de charge Pinc Pref I Démonstrateur de tag RFID à bas-coût (8/11) => Pref = Pabs JUST IN CASE!! (questions) ZL varie => I varie => Pref varie
Intégration antenne – puce (2/2) Puce RFID utilisée Lecture / Ecriture Mémoire de 1 kbits Application Gestion de stocks … f (MHz) P ERP max (W) Continent D lecture max (m) D écriture max (m) 869.40 – 869.65 0.5 européen 4 3.2 865.00 – 868.00 2 7 5.6 902.00 – 928.00 1 nord - américain 8 6.4 950.00 – 956.00 asiatique 6 4.8 Démonstrateur de tag RFID à bas-coût (9/11) JUST IN CASE!! (questions) f (GHz) 0.868 0.915 0.960 2.45 Z (état 1) (Ω) 11 - j.145 10 – j.136 10 – j.128 10 - j.28 Z (état 2)(Ω) 12 – j.159 11 – j.150 11 – j.142 10 – j.34
Modélisation de tags (1/2) Résultats à 868 MHz 106.2 mm 20 mm f (MHz) 868 S11 (dB) -48.24 ROS 1.008 BP (%) 13.1 G (dB) 0.877 D (dBi) 1.987 er (%) 79.1 et (%) S1,1: -48.24 Démonstrateur de tag RFID à bas-coût (10/11) And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity
Modélisation de tags (2/2) Résultats à 2.45 GHz 63.6 mm 14 mm f (GHz) 2.45 S11 (dB) -18.94 ROS 1.255 BP (%) 1.35 G (dB) 3.113 D (dBi) 4.228 er (%) 76.4 et (%) 72.6 Démonstrateur de tag RFID à bas-coût (11/11) And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity
Caractérisation des substrats : Conclusion PC PBT Caractérisation des substrats : ε'(ω), tanδ(ω) Impédance Caractérisation des conducteurs : h, σ Antennes à bas-coût ? Adaptation Intégration antenne – puce Tag RFID UHF, µonde à bas coût Dipôle replié EC-Ag Miniaturisation So, low-cost constraints means that we have to choose other materials than Duroid for example and copper, or other noble materials. We have also to avoid technological solutions to deposit conductive materials, such as PVD, used in micro industry. So, plastics seem to be good candidates to become substrates; BUT, there are so many kind of plastics and so many grades for one sample that it’s easy to get lost! Besides, while searching for dielectric constant for vulgar plastics, we found data sheets parameters with at 100MHz-maximum frequency! It can give us an idea but it ‘s still far from parameters at 2.45GHz! So we propose some plastics, which were selected for their low dielectric loss factor, to our partner. This last one gave us 9 plastics in response. And so we built up a method: 1st, to set up a characterization method, so that we can take into account of substrates dielectric parameters while designing, Then make them realize by our partner, then measure the conductive properties, thanks to the other partner. It’s useful to measure the shape deposited, in order to compare more accurately simulation and measurements. And don’t forget that the main purpose is to integrate low-cost antennas in system. Méthode de réalisation Sérigraphie
Vision globale d'un système Pour l'avenir… Des substrats peu coûteux : Plastiques (perméables, souples) Papiers Textiles Matériaux recyclés … Des matières conductrices peu coûteuses : Encres conductrices Polymères conducteurs … Méthodologie : Vision globale d'un système QUID des TAGS RFID et de l'ÉTHIQUE ? Conception d'antennes : Miniaturisation Multifréquences Conformance … D'autres méthodes de dépôt : Tampographie Impression numérique … Autres application à communication sans fil Bluetooth Wifi
REMERCIEMENTS I would like first to present our partners because thanks to them, we have had the opportunity to go from design and simulation to realization and measurements. In this project, in which our lab is leader, we count company, semi-public lab, and organization. The first one presents major skills in transforming plastics, but also in silk-screen printing. The second one, the cea-leti, helps us by furnishing equipment to measure conductive parameters. The last one, the organization, realizes a technological keeping watch to always stay up to date, and to know what’s going on, on the RFID market.
Contexte: traçabilité et identification Norme ISO « Aptitude à retrouver l’historique, l’utilisation ou la localisation d’un article ou d’une activité [..] au moyen d’une identification enregistrée » Suivi de la création à la destruction d’un produit Identification Inscriptions dans la pierre Écritures sur papyrus, peaux, papiers Codes à barres RFID Constitution d'un tag RFID à bas-coût (1/) We set right in RFID System, and in the front-end region. At the moment RFID is widely developed and used in LF and HP ranges. We would like to develop more UHF and microwave ranges, because of their physical properties. It means, nowadays, µchip are well-known and you can find some at rather low-cost… But what about antennas? Would it possible to use low-cost antennas-so that we could have low-cost RFID tag-, which could be realized by speed method? This is what we focus on… Besides, it’s important to notice that the application depends only from µchip; so the 2.45GHz-antennas, we will present could work also for Bluetooth or wifi communication if they are well adapted
Δ |simulation – mesure| Antennes bas-coût (6/11) MESURES Plastique PBT- EC-Ag, 1er groupe Paramètres Simulation Mesure Δ |simulation – mesure| S11 (dB) -20.9423 -14.5620 6.3803 BP (%) 1.33 1.64 0.31 ROS 1.1971 1.4601 0.2630 f (GHz) 2.2943 2.2238 70.5 MHz G (dB) 5.55 1.065 4.48 Here are the results of antennas with the substrate #8, to show that less good dielectric parameters provide less good antenna parameters
Intégration antenne – puce (1/3) Principe: rétrodiffusion ("backscattering") RCS et modulation de charge Pinc Pray I Démonstrateur de tag à bas-coût (8/12) JUST IN CASE!! (questions) ZL varie => I varie => Sray varie = σ varie
Intégration antenne – puce (3/3) Principe: adaptation d'impédance Différentes méthodes d'adaptation Exemple: modulation BPSK Impédance de l’antenne : Zant = Reant + j.Imant Impédance de la puce : Etat 1 : Z1 = Re1 – j.Im1 Etat 2 : Z2 = Re2 – j.Im2 Un seul état Le milieu des deux états Démonstrateur de tag à bas-coût (10/12) JUST IN CASE!! (questions)
MINIATURISATION d'ANTENNES Démonstrateur de tag (X/X) MINIATURISATION d'ANTENNES Matériaux CRLH And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity
MINIATURISATION d'ANTENNES Démonstrateur de tag (X/X) MINIATURISATION d'ANTENNES Antenne à fente And the goal of these antennas is to demonstrate the feasibility of such low-cost materials to construct UHF and Microwave antennas And so we present here a different way to match antenna to µ-chip: instead of adding matching component we design the antenna such as its impedance matches with this of the chip. The design is a mix of H-shape, rectangular patch with 2 thin slots and 2 folded dipoles. The green rectangle is the chip location; simulation results are a -30dB - S11 parameter and a 6.5 dBi directivity