Parallaxe des étoiles Simulation Observatoire de Lyon.

Slides:



Advertisements
Présentations similaires
Le mouvement (1) Trajectoire d’un mobile
Advertisements

Chap. 14 : La relativité du mouvement.
par une mesure de parallaxe
Les unités de mesure en astronomie d’observation
Influence des paramètres orbitaux sur le climat terrestre
REPÉRAGE DANS L’ESPACE
REPÉRAGE DANS L’ESPACE
Le ciel et la terre Animations pédagogiques Sciences
La Terre, le Soleil et la Lune
des orbites Paramètres des planètes Observatoire de Lyon - phm 2004.
(28 déc.2003)Observatoire de Lyon - Transit de Vénus1 Passage de Vénus devant le Soleil Le phénomène et son observation 8 juin 2004.
DIAMÈTRE de la LUNE par ARISTARQUE
Rotations Terre et Lune Visibilité de la surface de la Lune
Dans l’univers, les étoiles sont regroupées en galaxie :
REPÉRAGE DANS L’ESPACE
REPÉRAGE DANS L’ESPACE
Mesure des longueurs.
Club d’Astronomie Lycée Saint Exupéry Lyon
Reconstruction 3D par mono vision avec des trajectoires fortement contraintes Joan Solà LAAS-CNRS Toulouse, France Revue du projet PICAS$O 3 novembre 2005.
Une petite boule bleue perdue dans l’espace…
(Institut d’Astrophysique de Paris)
Les unités de mesure en astronomie d’observation
Chapitre 1. Présentation de l’Univers
Quel est cet astre au comportement si curieux ?
Les saisons La durée du jour
Les Sciences de l’Univers :
LE SOLEIL, LA TERRE ET LA LUNE
Les mouvements de la lune
Sommaire I- Définition et généralité
Vecteur vitesse d‘un point
Le Soleil et le système solaire
La mesure des distances à lintérieur du système solaire La triangulation Lois de Kepler Détermination des temps orbitaux Détermination des distances orbitales.
ou comment se mettre le ciel dans la poche
Points essentiels La force gravitationnelle;
Site Web: Astronomie d'observationAstronomie d'observation À se procurer : Entente #203-E66 $7,34.
Astronomie d’observation 203-CCB Automne 2009
La Voie Lactée. 1. Les constellations 2. Les systèmes de coordonnées: 1. Les coordonnées géographiques 2. Les coordonnées équatoriales 3. Mouvement apparent.
I Description de l’univers :
1. Étude des caractéristiques du mouvement de Vénus
Les lois de Kepler.
La parallaxe.
Relativité du mouvement
Comment étudier un mouvement?
Chapitre 11 : L’astrométrie et mesure des distances dans l’espace
Notions de parallaxe d'un astre
Rotation et périodicité des planètes
Mesure des distance 1 : à l’intérieur d’une galaxie
Simulation d’observations et de mesures de la parallaxe d ’une étoile
Une brève histoire de la mesure des distances dans le système solaire
Dans l’univers, les étoiles sont regroupées en galaxie :
PhM – Observatoire de Lyon – /04/2014Traitement et identifications - spectres du Lhires III2  Introduction La lumière d’une étoile vue sur.
2009 fut l’année mondiale de l’astronomie
EXPLOITATION DES IMAGES
Construire à partir de cercles Champs magnétiques ou électrostatiques.
Dans son voyage autour du Soleil, la Terre rencontre tous les jours sur son orbite des fragments de roches et des poussières. Ces roches et ces poussières.
Diamètre de la Lune et distance Terre – Lune
(janvier 2003)Observatoire de Lyon - Passage de Vénus1 Rotation et périodicité des planètes.
2. Description de l’univers 2. 1
Club d’Astronomie Lycée Saint Exupéry Lyon
ri shi Soleil Dévorer Éclipse totale de Soleil.
Chapitre 11 : Mouvements (cinématique) et première loi de Newton.
Paramètres des orbites des planètes
Voir loin c’est voir dans le passé
Description de l’Univers
Le soleil, la terre et la lune
CHAPITRE 3 : Les longueurs à l’échelle astronomique
Des paramètres astronomiques: La théorie astronomique
Tète dans les étoiles et mains libre
Référentiel terrestre
Transcription de la présentation:

Parallaxe des étoiles Simulation Observatoire de Lyon

Parallaxe et distance d’une étoile Simulation d’observations et de mesures au moyen de la maquette Terre-plan de l’écliptique La méthode la plus simple pour mesurer la distance d’un objet inaccessible, est de faire de la triangulation. A partir de deux points d’observation séparés d’une distance convenable (la base), on mesure les angles de directions chaque direction observateur-objet avec la direction donnée par les deux observateurs. La connaissance de la distance entre les deux points et des angles permet de calculer la distance du point visé. Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) On fait de même pour mesurer les distances des étoiles proches. La base est donnée par la position de la Terre à 6 mois d’intervalle les angles se mesurent par rapport au fond des étoiles lointaines dont on connait les positions angulaires. Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) Manipulation • La maquette permet de simuler la révolution annuelle de la Terre autour du Soleil. • L’étoile proche est représentée par le point lumineux. • Le champ d’étoiles lointaines est représenté par l’image d’un champ d’étoiles. Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) Champ d'étoiles Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) Manipulation On donne la carte du champ d’étoiles et un repère destiné à faciliter les mesures. Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) Carte du champ d'étoiles Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) Manipulation On donne la carte du champ d’étoiles et un repère destiné à faciliter les mesures. On identifie les étoiles du champs avec celles de la carte. La projection sur le fond du ciel de la ligne de visée Terre-étoile se fait en repérant le point de la carte où arrive la ligne de visée. Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) Manipulation Observer et mesurer : 1 - La Terre parcourant son orbite, repérer la trajectoire que décrit la projection Terre-étoile sur le fond du ciel. 2 - Quelle est la forme de cette trajectoire ? 3 - Repérer les positions de la plus grande amplitude et les reporter sur la carte. Refaire la mesure pour vérifier la bonne lecture de la visée. 4 - Estimer la précision des mesures. 5 - Quand ont lieu ces maxima d’amplitude ? Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) Manipulation Calcul de la parallaxe de l'étoile - La projection décrit une ellipse sur le fond du ciel. - La grandeur du grand axe mesurée dans l'échelle de la carte (secondes d'arc) donne le double de la parallaxe de l'étoile. - Comment varie l'ellipse si l'étoile est plus près ? - Comment varie l'ellipse si l'étoile est plus haut au-dessus de l'écliptique ? Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation)

Parallaxe d'un astre (simulation) Fin Parallaxe d'un astre (simulation)