Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parAdeline Lamontagne Modifié depuis plus de 5 années
1
Exercice 4 : Soit le cône de révolution ( le plus grand ) contenu dans un cube de côté a. Déterminez sa perspective cavalière ( on prendra a = 10 cm ), et son patron ( on prendra a = 3 cm ), l’aire de son enveloppe et son volume ( a non fixé ).
2
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. je me base sur un cube
3
je dessine la base avec le centre du cercle
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. je dessine la base avec le centre du cercle
4
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. je dessine la base avec le centre du cercle je « tangente » les côtés du carré pour dessiner le cercle qui n’est pas vu à plat
5
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. je dessine la base avec le centre du cercle je « tangente » les côtés du carré pour dessiner le cercle qui n’est pas vu à plat le sommet est la verticale du centre de la base, et à l’intersection des diagonales du haut.
6
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. je dessine la base avec le centre du cercle je « tangente » les côtés du carré pour dessiner le cercle qui n’est pas vu à plat le sommet est la verticale du centre de la base, et à l’intersection des diagonales du haut. je relie le sommet à la base.
7
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. la base
8
la base la surface latérale
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. la base la surface latérale
9
la base la surface latérale R = ? b = ?
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. la base la surface latérale R = ? b = ?
10
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. la base la surface latérale a R = ? Pythagore : a² + (½ a)² = R² b = ? a² + ¼ a² = 1,25 a² = R² a donc R = a √1,25 ≈ 1,11 a
11
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. la base la surface latérale R = ? Pythagore : a² + (½ a)² = R² b = ? a² + ¼ a² = 1,25 a² = R² a donc R = a √1,25 ≈ 1,11 a p p πR Le périmètre p du secteur angulaire est proportionnel à l’angle : = b ° donc b = …
12
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. la base la surface latérale R = Pythagore : a² + (½ a)² = R² b = ? a² + ¼ a² = 1,25 a² = R² a donc R = a √1,25 ≈ 1,11 a p p p πR Le périmètre p du secteur angulaire est proportionnel à l’angle : = b ° 360 p πa donc b = = = ≈ 161,00° 2πR π a √1, √1,25
13
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. ≈ 1,11 a R = Pythagore : a² + (½ a)² = R² a² + ¼ a² = 1,25 a² = R² a ≈ 161,00° donc R = a √1,25 ≈ 1,11 a p p p πR Le périmètre p du secteur angulaire est proportionnel à l’angle : = b ° 360 p πr π(½ a) donc b = = = = ≈ 161,00° 2πR π a √1, π a √1, √1,25
14
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. R = a √1,25 ≈ 1,11 a a b = ≈ 161° a √1,25 Aire = aire de la base + aire latérale ( qui est proportionnelle à l’angle ) b Aire = π r² π R² = π ( ½ a )² π (a √1,25)² √1,25
15
On peut simplifier l’expression de l’aire…
Aire = aire de la base + aire latérale ( qui est proportionnelle à l’angle ) b 1 Aire = π r² + π R² = π ( ½ a )² + π (a √1,25)² √1, = π ( ¼ a² ) + π (1,25 a²) = ¼ π a² + π ( √1,25 )² a² 2 √1,25 2 √1,25 = ¼ π a² + (¼ √4) π √1,25 a² = ¼ π a² + ¼ π a² 4×1,25 = ¼ π a² + ¼ π a² √5 = ¼ π a² ( 1 + √5 )
16
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a
Exercice 4 : Soit le cône de révolution contenu dans un cube de côté a. Déterminez sa perspective cavalière, son patron, l’aire de son enveloppe, et son volume. R = a √1,25 ≈ 1,11 a a b = ≈ 161° a √1,25 Aire = aire de la base + aire latérale ( qui est proportionnelle à l’angle ) b Aire = π r² π R² = π ( ½ a )² π (a √1,25)² = … = ¼ π a² ( 1 + √5 ) √1,25 V = ⅓ base × hauteur = ⅓ π ( ½ a )² × a = ⅓ π ( ¼ a² ) × a = π a3 / 12
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.