La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Traitement d’images : concepts avancés

Présentations similaires


Présentation au sujet: "Traitement d’images : concepts avancés"— Transcription de la présentation:

1 Traitement d’images : concepts avancés
Morphologie mathématique Images binaires Images niveaux de gris Classification Classifications pixeliques Modèles à base de champs de Markov Segmentation Méthodes ad hoc Approche variationnelle Détection / Suivi Changement Flot optique

2 Bibliographie H. Maître, Le traitement des images, Hermès éditions.
J.-P. Cocquerez & S. Philipp, Analyse d’images : filtrage et segmentation, Masson éditions. S. Bres, J.-M. Jolion & F. Lebourgeois, Traitement et analyse des images numériques, Hermès éditions.

3 Pavage et maillage Pavage = partition de l’espace continu en cellules élémentaires Cas de pavages plan réguliers : cellules identiques et régulières Maillage = ensemble des segments reliant les ‘centroïdes’ des cellules ayant une arête commune Dualité pavage et maillage

4 Notion de voisinage élémentaire
Image discrète = graphe Connexité trame carrée trame hexagonale  chemin sur le graphe = succession de nœuds du graphe joints par des arcs chemin 4-connexe : chemin 8-connexe :

5 Notion d’ « entourage » Théorème de Jordan : toute courbe simple fermée sépare l’espace en 2 composantes : l’intérieur et l’extérieur de la courbe. Cas de la trame carrée : tout chemin 4-connexe (resp. 8-connexe) simple fermé (Ai=Aj  i=j et Ai voisin de Aj  |i-j|=1[n]) sépare l’espace en 2 composantes 8-connexes (resp. 4-connexes) Nombre d’Euler = différence entre le # composantes connexes et le # de trous ( dualité des connexités). Soit : s=#singletons, a=#couples ligne ou colonne, d=#couples diagonaux, t=#trinômes, q=#quadrinômes, alors en 4-connexité E=s-a+q en 8-connexité E=s-a-d+t-q

6 Exemple : nombre d’Euler
Cas 4-connexe : # composantes 4-connexes = 3 # de trous (8-connexes) = 1  E4=2 Cas 8-connexe : # composantes 8-connexes = 1 # de trous (4-connexes) = 2  E8=-1 s=16, a=14, d=13, t=10, q=0  En 4-connexité E4=s-a+q=2 En 8-connexité E8=s-a-d+t-q=-1

7 Distances discrètes (I)
Distance à 1 objet  minimum des distances euclidiennes (approximées) aux points de l’objet Propagation de distances locales Distances définies à partir d’un ensemble de vecteurs de déplacement Utilisation de masques Exemple : 1 1 1 0 1 1 1 1 4 3 4 3 0 3 11 11 5 0 5 1

8 Distances discrètes (II)
Partition du masque en 2 sous-masques g1 et g2 causaux ULLR et LRUL Algorithme de calcul séquentiel 1) Poser 2) f0  image / points de l’objet  0 et les autres  + 3) pour k=1,2 si k=1, balayer l’image dans le sens UL  LR si k=2, balayer l’image dans le sens LR  UL 4) image des distances  f2 4 3 4 3 0 3

9 Distances discrètes : exemple
1 2 3 4 5 4 3 2 1 5

10 Distances géodésiques
Intérêt des métriques géodésiques : tient compte des obstacles ( dist. euclidienne ou versions digitales).  distance géodésique : étant donnés 2 points a et b d’un compact X,  toujours un plus court chemin de a à b qui soit  X; la longueur de ce chemin est dX(a,b). Propriétés : dX est une distance généralisée, i.e. a b d c

11 Pavage de Voronoï Ensemble de germes {P1, P2, …, Pn}
V(Pi)={PR2 / j[1,n], d(P,Pi)d(P,Pj)} Propriétés : tout sommet de Voronoï est le centre d’un cercle (de Delaunay) passant par 3 germes et ne contenant aucun autre germe ; V(Pi) non borné ssi Pi  la frontière de l’enveloppe convexe des Pj Triangulation de Delaunay Algorithmes sous optimaux : insérer les points un par un Applications, e.g. : enveloppe convexe de points, distance de 2 ensembles de points Cas discret : distance discrète

12 Introduction à la morphologie mathématique
Traitement non linéaire de l’information Analyse morphologique : extraction des informations à partir de tests Exemples de problèmes : Repose sur la théorie des ensembles, des treillis complets, … – s’applique aux ensembles, aux fonctions, … Comment séparer 2 composantes ? Comment éliminer le bruit ? Comment étiqueter différemment 2 formes connexes ? Comment comparer 2 formes ?

13 Définition: 1 treillis est 1 ensemble ordonné (E,) tel que toute partie de E admette 1 borne supérieure et 1 borne inférieure  : réflexive (xE, xx), antisymétrique ((x,y)E2, xy et yx  x=y), transitive ((x,y,z)E3, xy et yz  xz ) Exemples de treillis: plus petit des majorants ensembliste des fonctions éléments parties de S f: S→R, ou f: S→Z relation d’ordre inclusion fg  x, f(x)g(x) borne supérieure union {fi}  x, ({fi})(x)= {fi(x)} borne inférieure intersection {fi}  x, ({fi})(x)= {fi(x)} involution complémentaire -f(x) (ou N-f(x) si f: S→[0,N]) plus grand des minorants

14 Opérateurs de MM : fondements mathématiques
principes fondamentaux Compatibilité avec les translations Compatibilité avec les homothéties Localité Semi-continuité propriétés Croissance Extensivité / anti-extensivité Idempotence Dualité Indépendance par rapport à l’origine de l’espace: t, y(f+t)=y(f)+t Indépendance par rapport au paramètre d’échelle: l, y(lf)=ly(f)  E’ borné,  E borné / y(f)E’=y(fE)E’ A,B AB  y(A)  y(B)  f,g f  g  y(f)  y(g) Extensivité:  A, Ay(A)  f, f  y(f) y(y(.))=y(.) y et f duales :

15 Erosion / dilatation : définitions (1)
Élément structurant B  relations de l’objet X avec l’élément (taille, forme données) Addition de Minkowski : lieu géométr. des points de Bx (translaté de B en x) lorsque x décrit X propriétés : commutative, associative, croissante, élément neutre Soustraction de Minkowski : Intersection des translatés de X par chaque point de B propriétés : non commutative, associative, croissante, élément neutre Ө

16 Erosion / dilatation : définitions (2)
Dilatation (binaire) : lieu géométr. des points x tels que Bx intersecte X Erosion (binaire) :  lieu géométr. des points x tels que Bx soit inclus dans X

17 Erosion / dilatation : propriétés (1)
Croissance par rapport à X En effet : Extensivité / anti-extensivité (si centre de B inclus dans B) Croissance / décroissance par rapport à B

18 Erosion / dilatation : propriétés (2)
Commutations en effet : Adjonction  La partie de Bz qui n’intersecte pas avec X est dans le complémentaire de Bz’  quand se restreint à BzBz’ on ‘est dans’ X

19 Erosion / dilatation : algorithmes (1)
Cas général (binaire) : En chaque pixel z de l’image examiner la relation entre l’élément struct. Bz et l’objet X Dilatation: pour i[1,#lignes] // boucle sur les lignes pour j[1,#colonnes] { // boucle sur les colonnes initializer y à 0 pour i’[iBmin,iBmax] // origine de B en 0  B inclus dans [iBmin,iBmax] [jBmin,jBmax] pour j’[jBmin,jBmax] si (y nul et ima(i+i’,j+j’) non nul et B(i’,j’) non nul) alors y  1 ima_dilate(i,j)  y } Erosion: initializer y à 1 si (y non nul et ima(i+i’,j+j’) nul et B(i’,j’) non nul) alors y  0 ima_erode(i,j)  y

20 Erosion / dilatation : algorithmes (2)
Exploitation de l’associativité de la dilatation / érosion Cas d’un élément B qui est le résultat de l’addition de Minkovski de et avec B1 (B à la taille élémentaire) : Itérer la dilatation (érosion) par B1 Cas d’un élément convexe : Dilatations (érosions) successives par 2 segments Cas d’un élément structurant ‘boule’ : Seuillage de la transformée en distance de l’image binaire ou de son complémentaire

21 Dilatation binaire : exemples
dB4(X) , B4: dB2(X), B2: dB2(dB2(X)) dB2(dB2(dB2(X))) dB0(X), B0: dB0(dB0(X)) dB0(dB0(dB0(X))) dB1(dB0(dB0(dB0(X)))), B1: dB1(dB1(dB0 (dB0(dB0(X))))) dB1(dB1(dB1(dB0 (dB0(dB0(X)))))) Dist1 4 3 4 3 0 3 11 11 5 0 5 Dist1 Dist1,5 Dist1,5 Dist2 Dist2 Dist2,5 Dist2,5

22 Érosion binaire : exemples
eB4(X) , B4: eB2(X), B2: eB2(eB2(X)) eB2(eB2(eB2(X))) eB0(X), B0: eB0(eB0(X)) eB0(eB0(eB0(X))) eB1(eB0(eB0(eB0(X)))), B1: eB1(eB1(eB0 (eB0(eB0(X))))) eB1(eB1(eB1(eB0 (eB0(eB0(X)))))) Dist1 Dist1,5 4 3 4 3 0 3 11 11 5 0 5 Dist2 Dist2,5

23 Dilatation / érosion de fonctions
Cas général Sous-graphe d’1 fct f : Erosion vérifie : le sous-graphe de eg(f)+g est inclus dans le sous-graphe de f : Dilatation vérifie : moins le sous-graphe de -df(f) a 1 intersection non vide avec le sous-graphe de f

24 Dilatation / érosion de fonctions
Cas particulier g(x)=0 xRnD Propriétés Identiques au cas binaire en remplaçant  par ,  par , et  par . Croissance par rapport à f Extensivité/antiextensivité si 0support de g Croissance(décroissance) / à g Adjonction Commutations

25 Dilatation / érosion de fct : exemples
Y B dB(X) dB(dB( X)) eB(X) eB(eB( X)) dB(X) dB(dB( X)) eB(X) eB(eB( X))

26 Rehaussement de contraste
Y a = b = 0.35 a = b = 0.45 X Boule 77, a = b = 0.45 Boule 55, a = b = 0.5 Boule 33, a = b = 0.5

27 Gradient et laplacien morphologiques
Opérateurs différence d’opérateurs Gradient intérieur, grad. extérieur Gradient morphologique Laplacien morphologique Convergence vers gradient et laplacien euclidiens si élément structurant = boule eucl. centrée et rayon  0 gB1(X) lB1(X) B1 X gB2(X) lB2(X) B2

28 Ouverture / fermeture : cas binaire
Propriétés Croissance / X trivial car eB et dB  / X Extensivité / anti-extensivité propriété d’adjonction  car  car (Dé)croissance / B

29 Ouverture / fermeture : propriétés
Idempotence Min-max : L’ouverture de X est le plus petit X’ de même érodé que X La fermeture de X est le plus grand X’ de même dilaté que X

30 Ouverture / fermeture numériques
Cas d’un élément structurant plan Ouverture / fermeture = filtres morphologiques : Ouverture écrête ‘pics’ Fermeture comble ‘vallées’

31 Top hat / Top hat conjugué
Opérateurs par différence : Top hat x-gS(x) Top hat conjugué jS(x)-x

32 Filtres alternés séquentiels : définition
Filtre morphologique  Ouverture / fermeture sont des filtres morphologiques (gl)l≥0 une ‘granulométrie’ et (jl)l≥0 l’anti- granulométrie associée Filtres alternés :

33 FAS Fl : propriétés Croissance trivial car g et f sont croissantes
Idempotence Absorption

34 FAS Gl : propriétés Croissance trivial car g et f sont croissantes
Idempotence Absorption

35 Filtres alternés séquentiels : exemples
Bruit gaussien s=20 Bruit gaussien s=60 Bruit gaussien s=20 + bruit impuls 10% Bruit impulsion 15% F1,2,3 G1,2,3

36 Dilatation / Erosion géodésique binaire
Boules géodésiques Quand l , les boules géodésiques progressent comme le front d’une onde émise depuis z dans le milieu X Dilatation géodésique de taille l de Y dans X (YBl)X Erosion géodésique X eX(Y1) Y1 Y2 e(Y2)X

37 Reconstruction géodésique binaire
Application : extraction de composantes connexes à partir de marqueurs Principe : à partir d’un point de la composante, on reconstruit toute la composante Méthode : dilatation géodésique dans X

38 Reconstruction géodésique : algorithme (cas binaire)
Éviter de réitérer dilatation jusqu’au diamètre des plus grandes composantes connexes Cas efficace : utilisation d’une pile des pixels de l’image à traiter : Exemple : Itération contenu de la pile Initialisation de la pile avec les pixels de XY Tant qu’il reste des éléments dans la pile : Extraire un élément (pixel) de la pile Le traiter labelisation de la composante connexe dans l’image résultat Calcul de ses voisins (dilatation par B) Ajout dans la pile (si nécessaire) des voisins situés dans X 1 (2,1) 2 (1,1) (3,1) 3 (3,1) (1,2) 4 (1,2) (3,2) (4,1) 5 (3,2) (4,1) (1,3) 6 (4,1) (1,3) (3,3) 7 (1,3) (3,3) (5,1) 8 (3,3) (5,1) (2,3) 9 (5,1) (2,3) (4,3) 10 (2,3) (4,3) (5,2) 11 (4,3) (5,2) (5,2) (5,3) (5,3)

39 Exemples d’application (1)
Reconstruction géodésique à partir de Y X Algorithme : k=0; Pour chaque pixel s de X : si xs et !zs : - calcul de EBX({s}) - k++ - t  EBX({s}), zt=k # composantes connexes = k Etiquettage de composantes connexes

40 Exemples d’application (2)
Filtrage par Erosion-Reconstruction (ne modifie pas les contours des objets restants  Erosion-Dilatation)  Erosion de X puis reconstruction de eB(X) dans X Suppression d’objets touchant le bord de l’image  Différence entre X et la reconstruction du bord dans X - =

41 Exemples d’application (3)
Bouchage de trous  Complément de la reconstruction dans Xc d’un ensemble qui n’intersecte pas X Seuillage avec hystérésis  Reconstruction des points au-dessus du seuil haut dans l’ensemble des points au-dessus du seuil bas. et

42 Dilatation / Erosion géodésiques numériques
Dilatation : le sous-graphe de df,l(g) est formé des points du sous-graphe de f reliés au sous-graphe de g par un chemin (i) non ‘descendant’, et (ii) de longueur  l. B unitaire  df(g)=inf(g+B, f) et df,n(g) = df… df(g) Erosion : par dualité ef(g)=N-df(N-g) Dilatation géodésique de g / f Erosion géodésique de f / g

43 Reconstruction géodésique numérique
grec(f;g) = sup. des dilatations géodésiques de g dans f Swamping  la plus grande fonction  f possédant des maxima aux points marqués Reconstruction de g dans f Reconstruction par marqueurs (swamping)

44 Erodé ultime : définition / algorithme
Cas général (binaire) Ensemble des composantes connexes de X disparaissant à l’itération suivante lors d’une séquence d’érosion par un élément structurant élémentaire B1  Pour chaque pixel (non déjà dans érodé ultime) disparaissant à l’itération t, calculer la composante connexe à t-1 et tester si tous les pixels ont effectivement disparus à t. Cas d’un élément structurant disque Ensemble des maxima régionaux de la fonction distance de X à son complémentaire Algorithme : Calcul de l’image des distances Calculer l’ensemble des maxima locaux Pour chaque maximum local (xsxt, tVs) non déjà traité : Reconstitution géodésique de la composante connexe à xs conditionnellement à l’image des valeurs supérieures à xs  CC(xs) Si xtCC(xs): xt>xs, alors marquer comme traités les maxima locaux qui appartiennent à CC(xs) Sinon, alors xs est un maximum régional et CC(xs)  érodé ultime

45 Erodé ultime : exemple Distance 4-connexité
Distances 8-connexité, respectivement masque (1,0), (4,3,0) et (11,7,5,0) Érosions successives par B

46 Transformation en ‘tout ou rien’ : cas binaire
Définition :  teste l’appartenance de certains voisins à X ET de certains autres à Xc Notation des éléments structurants : noir = objet (1), blanc = fond (0), gris = quelconque Ex. d’application : détection de coins (saillants) UL UR LL LR Exemple :

47 Calcul de l’enveloppe convexe
Rappel : Déf. L'enveloppe convexe d'un objet O est l’ensemble convexe (Ec /  (A,B) 2 points de Ec, [A,B] est entièrement contenu dans Ec) le plus petit parmi ceux incluant O.  épaississement (ajout des points sélectionnés) par la transformation en Tout ou Rien suivante : 12 elts struct. Exemple :  avec 1 elt. struct. 33, il n’est pas possible de gérer des pentes autres que {0,/2,/4,3/4}

48 Squelette morphologique : définition
Exemples de propriétés souhaitées : Préservation de la géométrie, de la topologie Invariance aux translations, rotations, homothéties Réversibilité, continuité, épaisseur nulle Squelette morphologique euclidien (cas continu) U des centres des boules maximales (contenues ds X) Cas discret : U des résidus d’ouverture des érodés successifs :  Pb : ne préserve pas la topologie Même forme, respect des parties allongées, etc… Mêmes nombres de composantes connexes, de trous. La forme peut être retrouvée connaissant le squelette et la taille des érosions (p.e.). Une ‘petite’ variation de forme engendre une petite variation du squelette. Épaisseur nulle, réversible Mais : ne préserve pas la topologie, ex : non continu, ex : mais

49 Homotopie discrète et simplicité
Définition : F fct de R2  R2 préserve la topologie si  A ouvert, A et F(A) sont homotopes Cas discret : A’ K-homotope à A   2 bijections préservant la relation d’entourage (au sens du théorème de Jordan) entre : (i) les ensembles des K-cc (K{4,8}) de A et de A’, (ii) les ensembles des K’-cc (K’=12-K) de Ac et de (A’)c  pour A’A (i) toute K-cc (K{4,8}) de A contient exactement 1 K-cc de A’ et (ii) toute K’-cc (K’=12-K) de (A’)c contient exactement 1 K’-cc de Ac Définition : x point K-simple dans X  X-{x} homotope à X  x a au moins 1 K’-voisin dans Xc et x est K-voisin d’1 seule K-cc de X  se calcule en examinant les 8 voisins

50 Homotopie discrète et simplicité
Propriété : x est K-simple  NKX(x)=1 Retrait des points K-simples : séquentiel  perte des propriétés métriques, parallèle  risque de perte de l’homotopie solution : ‘¼ parallèle’ : on ne retire ensemble que les points qui ont 1 voisin ‘Nord’ (resp. ‘Est’, ‘Sud’, ‘Ouest’) dans Xc Rq : noyau homotopique ne préserve pas la forme de X  utilisation de ‘points d’ancrage’ x3 x1 x2 x4 x0,x8 x x5 x7 x6 Une réunion de points K-simples n’est pas nécessairement un ensemble simple, ex : x et y sont 8-simples mais pas {x,y} x y

51 Caractérisation géométrique des points K-simples
Définition : transformation ‘tout ou rien’  teste l’appartenance de certains voisins à X ET de certains autres à Xc Définition : amincissement (resp. épaississement) de X  enlever (resp. ajouter) des points de X sélectionnés par 1 transformation en tout ou rien. Propriété : 1 amincissement (épaississement) est homotopique si l’inversion de couleur du point central ne modifie pas la topologie. Ex   préserve topo Exemples d’élément structurant : Lskel Mskel Ebardage

52 Squelette morphologique : algorithme
Rq : noyau homotopique ne préserve pas la forme de X  utilisation de ‘points d’ancrage’ , e.g. maxima locaux de la distance Algorithme préservant la topologie : Initialiser S(X) à X Répéter (jusqu’à avoir traité tous les points de X) : Soit ESd les points de S(X) ayant un voisin immédiat dans (S(X))c dans la direction ‘Nord’ (resp. ‘Est’, ‘Sud’, ‘Ouest’) Déterminer LK-s l’ensemble (parmi les points de ESd) des points ‘K-simples’ (en K connexité) Retirer simultanément de S(X) tous les points de LK-s (sauf points d’ancrage) Changer la direction considérée (N, E, S, ou O) Informatiquement, utilisation de ‘piles’ de pixels

53 1 1 2 1 2 1 2 2 1 1 2 2 1

54 Exemple : X 4-connexité Itérations 0, 1, 2 Itérations 3, 4, 5

55 Squelette par zones d’influence (SKIZ)
Définition : Soit X compact de R2, la zone d’influence d’une composante connexe Xi de X est l’ens. des points plus près de Xi que de tout autre composante Le SKIZ est la frontière des zones d’influence Calcul du SKIZ : 1. Amincissement du fond par Lskel 2. Puis ébardage du résultat de 1. Ex :

56 Ligne de partage des eaux : définition
Postulat : image = une surface topographique / niveau de gris = altitude 2 1 5 4 7 6 9 3 8 2 1 5 4 7 6 9 3 8 2 1 5 4 7 6 9 3 8 Cas ‘facile’ Cas ‘difficile’

57 Ligne de partage des eaux : définition
Ligne de partage des eaux (LPE) par immersion  à partir des minima régionaux mi, faire croître niveau des eaux progressivement de sorte que : (i) A chaque fois que la hauteur de l’eau atteint l’altitude d’un minimum régional, un nouveau bassin versant est créé (ii) A chaque fois que deux bassins se rencontrent, on empêche leur fusion en construisant une “digue”.  LPE = ensemble des digues.

58 LPE par immersion : algorithme
On note B(i) l’image binaire des valeurs ys (de Y) ≤ i Initialisation : W-1= Pour i variant de 0 à imax {mi} = {x : x B(i), x CC{mi-1}} = W(i) = IZB(i)(W(i-1))  {mi} LPE = Calcul de IZ géodésique : IZX(Y) Initialiser IZX(Y) à Y Initialiser la liste L à X-Y Tant que L non vide et |L| varie : Pour tout pixel de L : calculer s’il peut se rattacher à IZX(Y) par épaississement si oui, mettre sa valeur à 1 dans IZX(Y) et le retirer de L Les mj sont les nouveaux minima apparus à l’itération i Zones d’influence géodésiques des bassins versants obtenus à l’it. précédente dans l’image bin. courante des valeurs  i

59 LPE : exemple (© Course on Math. Morphology, J. Serra)
Ligne de partage des eaux superposée à l’image initiale W(1) B(2)-W(1) W(2) : zones d’influence géod. de W(1) dans B(2) minima pour i=0, B(0)=W(0) ; B(1)-B(0) W(1) : minima apparus à i=1  zones d’influence géodésiques de W(0) dans B(1) Image initiale : 4 niveaux de gris

60 LPE : Application à la segmentation d’une image en niveaux de gris
Utiliser l’image de la norme du gradients Risque de sur-segmentation discrétiser les valeurs entre 0 et imax (#régions) filtrer PB l’image du gradient (e.g. ouverture, fermeture)

61 Ligne de partage des eaux
Exemple : Gradient morphologique, boule 33 8-connexité Fermeture sur gradient morphologique Ouverture sur gradient morphologique #R = 25 #R = 15 #R = 15

62 LPE : Application à la segmentation
Cas d’objets binaires  circulaires : utiliser image des distances inverses mais risque de sur-segmentation  utiliser la reconstruction de l’image des distances diminuée d’une faible valeur sous l’image des distances (rq: SKIZ positionne mal les frontières pour objets de tailles différentes) Cas d’1 image en niveaux de gris : utiliser l’image des gradients mais risque de sur-segmentation  utiliser la technique du swamping pour imposer les minima locaux à considérer (et seulement ceux-là) Autres cas d’1 image en niveaux de gris : utiliser image top-hat / top-hat conjugué

63 LPE : exemple 1 (© I. Bloch ENST)
Image binaire initiale Image des distances (fausses couleurs) LPE sur image des distances inversée LPE sur image reconstruite de la distance -2 sous la distance

64 LPE : exemple 2 (© I. Bloch ENST)
Image du gradient après fermeture LPE correspondante Image du gradient après reconstruction par swamping LPE correspondante

65 Exercices (I) Proposer une ou plusieurs solutions pour les problèmes cités en introduction : Comment éliminer le bruit ? Comment séparer ces 2 composantes ? Comment comparer 2 formes ? Comment étiqueter différemment 2 formes connexes ?

66 Exercices (II) Démontrer les propriétés de commutation des opérateurs dilatation et érosion binaires. (Utiliser les définitions de ces opérateurs) Démontrer les propriétés de croissance / décroissance et extensivité / anti-extensivité des opérateurs ouverture et fermeture binaires. (Utiliser les propriétés des opérateurs dilatation et érosion, notamment l’adjonction pour démontrer l’extensivité / anti-extensivité)

67 Exercices (II) : correction
Commutation des opérateurs dilatation et érosion. Propriétés des ouvertures / fermetures binaires Croissance / X : trivial car eB et dB  / X Extensivité / anti-extensivité propriété d’adjonction  car  car (Dé)croissance / B

68 Exercices (III) Soit l’image suivante :
On cherche à compter les différents types de cellules et leur proportions respectives. Proposez une solution, décrivez le synoptique de l’algorithme à mettre en œuvre et les fonctions à développer (notamment les entrées / sorties), puis pour chacune d’elles le pseudo-code.

69 Exercices (III) : correction
Image niveaux de gris Image binaire Image binaire filtrée Éliminer les objets touchant le bord Seuillage Image segmentée des particules Détection des différentes particules Image binaire filtrée Éliminer le bruit (petites particules) Image des squelettes des particules Squelette Détermination des paramètres pour chaque particule Liste des objets avec caractérist. Liste des objets avec étiquettes Classification


Télécharger ppt "Traitement d’images : concepts avancés"

Présentations similaires


Annonces Google