Télécharger la présentation
Publié parDonatienne Picot Modifié depuis plus de 9 années
1
Notions préliminaires de géométrie discrète
Topologie 2D discrète : nombre de composantes connexes, de trous, représentation hiérarchique des objets. Distances discrètes : dimension (e.g. rayon) des composantes connexes, distance entre les objets. Relations ensemblistes entre les parties d’un objet
2
Voisinage élémentaire et entourage
Image discrète = graphe Connexité trame carrée trame hexagonale Chemin sur le graphe = succession de nœuds du graphe joints par des arcs chemin 4-connexe : chemin 8-connexe : Théorème de Jordan : toute courbe simple fermée sépare l’espace en 2 composantes : l’intérieur et l’extérieur de la courbe. Cas de la trame carrée : tout chemin 4-connexe (resp. 8-connexe) simple fermé (Ai=Aj i=j et Ai voisin de Aj |i-j|=1[n]) sépare l’espace en 2 composantes 8-connexes (resp. 4-connexes)
3
Exemple : nombre d’Euler
Nombre d’Euler = différence entre le nombre composantes connexes et le nombre de trous (attention à la dualité des connexités). Soit : s=nb singletons, a=nb couples ligne ou colonne, d=nb couples diagonaux, t=nb trinômes, q=nb quadrinômes, alors en 4-connexité E=s-a+q en 8-connexité E=s-a-d+t-q Ex: Cas 4-connexe : nombre composantes 4-connexes = 3 nombre de trous (8-connexes) = 1 E4=2 Cas 8-connexe : nombre composantes 8-connexes = 1 nombre de trous (4-connexes) = 2 E8=-1 s=16, a=14, d=13, t=10, q=0 En 4-connexité E4=s-a+q=2 En 8-connexité E8=s-a-d+t-q=-1
4
Distances discrètes (I)
Distance à 1 objet minimum des distances euclidiennes (approximées) aux points de l’objet Propagation de distances locales Distances définies à partir d’un ensemble de vecteurs de déplacement Utilisation de masques Exemple : 1 1 1 0 1 1 1 1 4 3 4 3 0 3 11 11 5 0 5 1
5
Distances discrètes (II)
Partition du masque en 2 sous-masques g1 et g2 causaux ULLR et LRUL Algorithme de calcul séquentiel 1) Poser 2) f0 image / points de l’objet 0 et les autres + 3) pour k=1,2 si k=1, balayer l’image dans le sens UL LR si k=2, balayer l’image dans le sens LR UL 4) image des distances f2 4 3 4 3 0 3
6
Distances discrètes : exemple
Image binaire (objet en noir) ∞ Initialisation ∞ 1 2 3 4 5 Fin itération 1 4 3 2 1 5 Fin itération 2
7
Distances géodésiques
Intérêt des métriques géodésiques : tient compte des obstacles ( dist. euclidienne ou versions digitales). distance géodésique : étant donnés 2 points a et b d’un compact X, toujours un plus court chemin de a à b qui soit X; la longueur de ce chemin est dX(a,b). Propriétés : dX est une distance généralisée, i.e. a b d c Séparation Sous-additivité
8
Introduction à la morphologie mathématique
Traitement non linéaire de l’information Extraction des informations à partir de tests (analyse morphologique) Exemples de problèmes : Repose sur la théorie des treillis (ens. ordonnés) complets, … – s’applique aux ensembles des parties d’un ens., aux fonctions, … Comment séparer 2 composantes ? Comment éliminer le bruit ? Comment étiqueter différemment 2 formes connexes ? Comment comparer 2 formes ?
9
Treillis de l’ensemble des parties d’1 ensemble S :
Définition: 1 treillis complet est 1 ensemble ordonné (E,) tel que toute partie de E admette 1 borne supérieure et 1 borne inférieure : réflexive (xE, xx), antisymétrique ((x,y)E2, xy et yx x=y), transitive ((x,y,z)E3, xy et yz xz ) plus petit des majorants plus grand des minorants Treillis de l’ensemble des parties d’1 ensemble S : éléments parties de S relation d’ordre inclusion borne supérieure union borne inférieure intersection involution complémentaire
10
Opérateurs de MM : fondements mathématiques
principes fondamentaux Compatibilité avec les translations Compatibilité avec les homothéties Localité propriétés Croissance Extensivité / anti-extensivité Idempotence Dualité Indépendance par rapport à l’origine de l’espace: t, y(f+t)=y(f)+t Indépendance par rapport au paramètre d’échelle: l, y(lf)=ly(f) E’ borné, E borné / y(f)E’=y(fE)E’ A,B AB y(A) y(B) Extensivité: A, Ay(A) y(y(.))=y(.) y et f duales :
11
Erosion / dilatation : définitions (1)
Élément structurant B relations de l’objet X avec l’élément (taille, forme données) Addition de Minkowski : Union des translatés de X par chaque ‘point’ de B propriétés : commutative, associative, croissante, élément neutre Soustraction de Minkowski : Intersection des translatés de X par chaque point de B propriétés : non commutative, associative, croissante, élément neutre Ө
12
Erosion / dilatation : définitions (2)
Dilatation (binaire) : lieu géométr. des points x tels que Bx intersecte X Erosion (binaire) : lieu géométr. des points x tels que Bx soit inclus dans X dualité érosion / dilatation
13
Erosion / dilatation : algorithmes (1)
Cas général (binaire) : En chaque pixel z de l’image examiner la relation entre l’élément struct. Bz et l’objet X Dilatation: pour i[1,#lignes] // boucle sur les lignes pour j[1,#colonnes] { // boucle sur les colonnes initializer y à 0 pour i’[iBmin,iBmax] // origine de B en 0 B inclus dans [iBmin,iBmax] [jBmin,jBmax] pour j’[jBmin,jBmax] si (y nul et ima(i+i’,j+j’) non nul et B(i’,j’) non nul) alors y 1 ima_dilate(i,j) y } Erosion: initializer y à 1 si (y non nul et ima(i+i’,j+j’) nul et B(i’,j’) non nul) alors y 0 ima_erode(i,j) y
14
Erosion / dilatation : algorithmes (2)
Exploitation de l’associativité de la dilatation / érosion Cas d’un élément B qui est le résultat de l’addition de Minkowski de et avec B1 (B à la taille élémentaire) : Itérer la dilatation (érosion) par B1 Cas d’un élément convexe : Dilatations (érosions) successives par 2 segments Cas d’un élément structurant ‘boule’ : Seuillage de la transformée en distance de l’image binaire ou de son complémentaire
15
Dilatation binaire : exemples
dB4(X) , B4: dB2(X), B2: dB2(dB2(X)) dB2(dB2(dB2(X))) dB0(X), B0: dB0(dB0(X)) dB0(dB0(dB0(X))) dB1(dB0(dB0(dB0(X)))), B1: dB1(dB1(dB0 (dB0(dB0(X))))) dB1(dB1(dB1(dB0 (dB0(dB0(X)))))) Dist1 4 3 4 3 0 3 11 11 5 0 5 Dist1 Dist1,5 Dist1,5 Dist2 Dist2 Dist2,5 Dist2,5
16
Érosion binaire : exemples
eB4(X) , B4: eB2(X), B2: eB2(eB2(X)) eB2(eB2(eB2(X))) eB0(X), B0: eB0(eB0(X)) eB0(eB0(eB0(X))) eB1(eB0(eB0(eB0(X)))), B1: eB1(eB1(eB0 (eB0(eB0(X))))) eB1(eB1(eB1(eB0 (eB0(eB0(X)))))) Dist1 Dist1,5 4 3 4 3 0 3 11 11 5 0 5 Dist2 Dist2,5
17
Erosion / dilatation : propriétés (1)
Croissance par rapport à X En effet : Extensivité / anti-extensivité (si centre de B inclus dans B) Croissance / décroissance par rapport à B
18
Erosion / dilatation : propriétés (2)
Commutations en effet : Adjonction La partie de Bz qui n’intersecte pas avec X est dans le complémentaire de Bz’ quand on se restreint à BzBz’ on ‘est dans’ X
19
Erosion / dilatation : exemples illustrant les propriétés
Soit les éléments structurants : et B1 B2 X=dB1B2(X) dB1(X) dB2(X) dB1(X)dB2(X) X=eB1B2(X) eB1(X) eB2(X) eB1(X)eB2(X)
20
Ouverture / fermeture binaires
Définition Exemples binarisation e5(X) X-e5(X) g5(X) X-g5(X) X-g15(X) g15(X) X-e15(X) e15(X)
21
Ouverture / fermeture : propriétés (1)
Croissance / X trivial car eB et dB / X Extensivité / anti-extensivité propriété d’adjonction car car Illustration avec (Dé)croissance / B B X dB(X); XdB(X) jB(X); XjB(X)
22
Ouverture / fermeture : propriétés
Idempotence Min-max : L’ouverture de X est le plus petit X’ de même érodé que X La fermeture de X est le plus grand X’ de même dilaté que X
23
Ouverture / fermeture : exemples illustrant les propriétés
g15(X) = X g5(X) e15(g5(X)) g15(g5(X)) e15(X) e15(g15(X)) =
24
Profil morphologique : définition
(gl)l≥0 une ‘granulométrie’ et (jl)l≥0 l’anti- granulométrie associée Fonction de distribution granulométrique m mesure bornée sur le treillis (e.g. aire#pixels) Xl = gl(X) et X-l = jl(X) FX(l)=1-m(Xl)/m(X0) Spectre granulométrique fX(l)= F’X(l) (dérivée de FX) (gl)l0 / 0ll’ gl’gl=glgl’=gl’
25
Profil morphologique : application à l’analyse de texture
X1=g(X0) X2=g(X1) X3=g(X2) X4=g(X3) X-1=j(X0) X-3=j(X-2) X-4 X-5 X-6 X-7 X-8
26
Dilatation / Erosion géodésique binaire
Boules géodésiques Quand l , les boules géodésiques progressent comme le front d’une onde émise depuis z dans le milieu X Dilatation géodésique de taille l de Y dans X (YBl)X Erosion géodésique X eX(Y1) Y1 Y2 e(Y2)X
27
Reconstruction géodésique binaire
Principe : à partir de marqueurs d’une composante connexe, on reconstruit toute la composante Méthode : dilatation géodésique dans X Algorithme Initialisation de la pile avec les pixels de XY Tant qu’il reste des éléments dans la pile : Extraire un élément (pixel) de la pile Le traiter labelisation de la composante connexe dans l’image résultat Calcul de ses voisins (dilatation par B) Ajout dans la pile (si nécessaire) des voisins situés dans X
28
Reconstruction géodésique : exemple
Itération contenu de la pile 1 2 3 4 5 6 7 1 (2,1) 2 (1,1) (3,1) 3 (3,1) (1,2) 4 (1,2) (3,2) (4,1) 5 (3,2) (4,1) (1,3) 6 (4,1) (1,3) (3,3) 7 (1,3) (3,3) (5,1) 8 (3,3) (5,1) (2,3) (1,4) 9 (5,1) (2,3) (1,4) (4,3) (3,4) 10 (2,3) (1,4) (4,3) (3,4) (5,2) 11 (1,4) (4,3) (3,4) (5,2) (2,4) 12 (4,3) (3,4) (5,2) (2,4) (5,3) (4,4) 13 (3,4) (5,2) (2,4) (5,3) (4,4) (5,2) (2,4) (5,3) (4,4) (2,4) (5,3) (4,4) (5,3) (4,4) (5,4) (4,4) (5,4) (5,4)
29
Exemples d’application (1&2)
Reconstruction géodésique à partir de Y X Algorithme : k=0; Pour chaque pixel s de X : si xs et !zs : - calcul de EBX({s}) - k++ - t EBX({s}), zt=k nbre composantes connexes = k Etiquettage de composantes connexes
30
Exemples d’application (3)
Filtrage par Erosion-Reconstruction (ne modifie pas les contours des objets restants Erosion-Dilatation) Erosion de X puis reconstruction de eB(X) dans X = g15(X) - X Exemple ‘cellules’ EBX(e15(X)) - = X
31
Exemples d’application (4)
Suppression d’objets touchant le bord de l’image Différence entre X et la reconstruction du bord dans X Exemple ‘cellules’ - = - = X EBX({l=0[nlig-1]} {c=0[ncol-1]})
32
Exemples d’application (5)
Bouchage de trous Complément de la reconstruction dans Xc d’un ensemble qui n’intersecte pas X Bouchage de trous Filtrage par reconstruction Exemple cellules cancer
33
Exemples d’application (6)
Seuillage avec hystérésis Reconstruction des points au-dessus du seuil haut dans l’ensemble des points au-dessus du seuil bas. Seuil=160 Seuil=210 Reconstructuion géodésique Bouchage de trou et Application à la détection de contours
34
Erodé ultime : définition / algorithme
Cas général (binaire) Ensemble des composantes connexes de X disparaissant à l’itération suivante lors d’une séquence d’érosions par un élément structurant élémentaire B1 Pour chaque pixel (non déjà dans érodé ultime) disparaissant à l’itération t, calculer la composante connexe à t-1 et tester si tous les pixels ont effectivement disparus à t. Cas d’un élément structurant disque Ensemble des maxima régionaux de la fonction distance de X à son complémentaire Algorithme : Calcul de l’image des distances Calculer l’ensemble des maxima locaux Pour chaque maximum local (xsxt, tVs) non déjà traité : Reconstitution géodésique de la composante connexe à xs conditionnellement à l’image des valeurs supérieures à xs CC(xs) Si xtCC(xs): xt>xs, alors marquer comme traités les maxima locaux qui appartiennent à CC(xs) Sinon, alors xs est un maximum régional et CC(xs) érodé ultime
35
Erodé ultime : exemple Distance 4-connexité
Distances 8-connexité, respectivement masque (1,0), (4,3,0) et (11,7,5,0) Érosions successives par B
36
Transformation en ‘tout ou rien’
Définition : teste l’appartenance de certains voisins à X ET de certains autres à Xc Notation des éléments structurants : noir = objet (1), blanc = fond (0), gris = quelconque Ex. d’application : détection de coins (saillants) UL UR LL LR généralisé pour des dimensions >3
37
Calcul de l’enveloppe convexe
Définition: L'enveloppe convexe d'un objet O est l’ensemble convexe (Ec / (A,B) 2 points de Ec, [A,B] est entièrement contenu dans Ec) le plus petit parmi ceux incluant O. épaississement (ajout des points sélectionnés) par la transformation en Tout ou Rien suivante : 12 elts struct. Exemple : avec 1 elt. struct. 33, il n’est pas possible de gérer des pentes autres que {0,/2,/4,3/4}
38
Squelette morphologique : définition
Même forme, respect des parties allongées, etc… Mêmes nombres de composantes connexes, de trous. Exemples de propriétés souhaitées : Préservation de la géométrie, de la topologie Invariance aux translations, rotations, homothéties Réversibilité, continuité, épaisseur nulle Squelette morphologique euclidien (cas continu) U des centres des boules maximales (contenues ds X) Cas discret : U des résidus d’ouverture des érodés successifs : Épaisseur nulle, réversible Mais ne préserve pas la topologie, ex: non continu, ex: La forme peut être retrouvée connaissant le squelette et la taille des érosions (p.e.). 1 ‘petite’ variation de forme engendre 1 petite variation du squelette.
39
Homotopie discrète et simplicité
Définition : F fct de R2 R2 préserve la topologie si A ouvert, A et F(A) sont homotopes Cas discret : A’ K-homotope à A 2 bijections préservant la relation d’entourage (au sens du théorème de Jordan) entre : (i) les ensembles des K-cc (K{4,8}) de A et de A’, (ii) les ensembles des K’-cc (K’=12-K) de Ac et de (A’)c pour A’A (i) toute K-cc (K{4,8}) de A contient exactement 1 K-cc de A’ et (ii) toute K’-cc (K’=12-K) de (A’)c contient exactement 1 K’-cc de Ac Définition : x point K-simple dans X X-{x} homotope à X x a au moins 1 K’-voisin dans Xc et x est K-voisin d’1 seule K-cc de X se calcule en examinant les 8 voisins
40
Homotopie discrète et simplicité
x3 x1 x2 x4 x0,x8 x x5 x7 x6 Propriété : x est K-simple NKX(x)=1 Retrait des points K-simples : séquentiel perte des propriétés métriques, parallèle risque de perte de l’homotopie solution : ‘¼ parallèle’ : on ne retire ensemble que les points qui ont 1 voisin ‘Nord’ (resp. ‘Est’, ‘Sud’, ‘Ouest’) dans Xc Rq : noyau homotopique ne préserve pas la forme de X utilisation de ‘points d’ancrage’ Une union de points K-simples n’est pas nécessairement 1 ens. simple, ex : x et y sont simples mais pas {x,y} x y
41
Caractérisation géométrique des points K-simples
Définition : transformation ‘tout ou rien’ teste l’appartenance de certains voisins à X ET de certains autres à Xc Définition : amincissement (resp. épaississement) de X enlever (resp. ajouter) des points de X sélectionnés par 1 transformation en tout ou rien. Propriété : 1 amincissement (épaississement) est homotopique si l’inversion de couleur du point central ne modifie pas la topologie. Ex préserve topo Exemples d’élément structurant : Lskel Mskel Ebardage
42
Squelette morphologique : algorithme
Rq : noyau homotopique ne préserve pas la forme de X utilisation de ‘points d’ancrage’ , e.g. maxima locaux de la distance Algorithme préservant la topologie : Initialiser S(X) à X Répéter (jusqu’à avoir traité tous les points de X) : Soit ESd les points de S(X) ayant un voisin immédiat dans (S(X))c dans la direction ‘Nord’ (resp. ‘Est’, ‘Sud’, ‘Ouest’) Déterminer LK-s l’ensemble (parmi les points de ESd) des points ‘K-simples’ (en K connexité) Retirer simultanément de S(X) tous les points de LK-s (sauf points d’ancrage) Changer la direction considérée (N, E, S, ou O) Informatiquement, utilisation de ‘piles’ de pixels
43
1 1 2 1 2 1 2 2 1 1 2 2 1
44
Exemple : X 4-connexité Itérations 0, 1, 2 Itérations 3, 4, 5
45
Squelette par zones d’influence (SKIZ)
Définition : Soit X compact de R2, la zone d’influence d’une composante connexe Xi de X est l’ens. des points plus près de Xi que de tout autre composante Le SKIZ est la frontière des zones d’influence Calcul du SKIZ : 1. Amincissement du fond par Lskel 2. Puis ébardage du résultat de 1. Ex :
46
SKIZ : Exemple SKIZ Composantes connexes de Ib
Transformée en distance de Ib Composantes connexes de Iz Image binaire des cellules (Ib) Maxima régionaux de la transformée en distance Zones d’influence géodés. (Iz) des max. reg. des dist. dans Ib SKIZ
47
Exercices (II) Démontrer les propriétés de commutation des opérateurs dilatation et érosion binaires. (Utiliser les définitions de ces opérateurs) Démontrer les propriétés de croissance / décroissance et extensivité / anti-extensivité des opérateurs ouverture et fermeture binaires. (Utiliser les propriétés des opérateurs dilatation et érosion, notamment l’adjonction pour démontrer l’extensivité / anti-extensivité)
48
Exercices (II) : correction
Commutation des opérateurs dilatation et érosion. Propriétés des ouvertures / fermetures binaires Croissance / X : trivial car eB et dB / X Extensivité / anti-extensivité propriété d’adjonction car car (Dé)croissance / B
49
Exercice Soit l’image suivante :
On cherche à compter les différents types de cellules et leur proportions respectives. Proposez une solution, décrivez le synoptique de l’algorithme à mettre en œuvre et les fonctions à développer (notamment les entrées / sorties), puis pour chacune d’elles le pseudo-code.
50
Éliminer les objets touchant le bord Seuillage
Image niveaux de gris Image binaire Image binaire filtrée Éliminer les objets touchant le bord Seuillage Image segmentée des particules Détection des différentes particules Image binaire filtrée Éliminer le bruit (petites particules) Image des squelettes des particules Squelette Détermination des paramètres pour chaque particule Liste des objets avec caractérist. Liste des objets avec étiquettes Classification
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.