La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Evangelista Torricelli Evangelista Torricelli 1608 - 1647 Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon.

Présentations similaires


Présentation au sujet: "Evangelista Torricelli Evangelista Torricelli 1608 - 1647 Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon."— Transcription de la présentation:

1 Evangelista Torricelli Evangelista Torricelli Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon

2 Torricelli né à Faenza, 15 octobre 1608 Décédé à Florence, 25 octobre 1647 Carte dItalie

3 Torricelli a étudié au collège des Jésuites de sa ville natale avant de poursuivre ses études à Rome où il reçoit une formation mathématique. Celle-ci lui est donnée par labbé Benedetto Castelli, qui était mathématicien, ingénieur, disciple et ami de Galilée. À partir de 1632, année de la publication du Dialogue sur les deux plus grands Systèmes du Monde, Torricelli correspond avec Galilée et sinitie aux travaux de celui-ci. Après avoir pris connaissance dun travail réalisé par Torricelli sur les corps pesants, Galilée linvite à Arcetri près de Florence, dans la villa où il a été assigné à résidence après son procès. Torricelli répond à linvitation et agit comme secrétaire de Galilée pendant trois mois, jusquà la mort de celui-ci, le 8 janvier 1642.Galilée Éléments biographiques

4 Torricelli sapprête à repartir pour Rome lorsque le Grand- Duc Ferdinand II de Toscane le nomme au poste de mathématicien officiel de sa cour laissé vacant par la mort de Galilée. Torricelli sadonne alors à la recherche dans plusieurs domaines avec une prédilection pour la géométrie. En 1644, il publie Opera geometrica, seul ouvrage publié de son vivant. Il développe une grande habileté dans la fabrication de lentilles de télescope mais garde le secret sur ses techniques. Parallèlement à ses travaux de recherche, il correspond avec les mathématiciens de son époque, en particulier avec Roberval et Mersenne. Torricelli a également démontré que la vitesse découlement dun liquide par une ouverture est inversement proportionnel à la racine carrée de la hauteur du liquide. Éléments biographiques

5 Expérience de Torricelli Torricelli sintéresse au problème du poids de lair et en 1643, il imagine une expérience qui sera réalisée avec son collègue et ami Vincenzo Viviani. Cette expérience consiste à remplir de mercure un tube dont lextrémité est bouchée par une peau de porc. Ce tube est ensuite renversé et plongé dans une cuve de mercure. Le mercure descend dans le tube mais se stabilise avant datteindre le niveau de mercure dans la cuve. De plus, le mercure se stabilise toujours à la même hauteur dans le tube, environ 26 pouces trois lignes et demi.

6 Expérience de Torricelli Réaliser une expérience est une chose. En interpréter correctement les résultats et, dans le cas dune expérience nouvelle, faire recon- naître la validité de cette interprétation peut être très difficile. Ce fut le cas pour lexpérience de Torricelli car, par son interprétation, il reconnaît lexistence du vide, ce qui, depuis Aristote était considéré comme impossible. Il faudra les expériences de Pascal, de von Guericke et de Boyle pour confirmer linterprétation de Torricelli.

7 Torricelli et les tangentes Une partie des travaux de Torricelli sur la tangente se fondent sur la conception dynamique de la tangente utilisée également par Roberval. Il utilise aussi une méthode géométrique, consistant à détermi- ner, par exemple, le rapport de la sous-tangente sur labscisse du point de tangence. Ainsi, dans lillustration de la courbe hyperbolique ci-contre, il cherche à déterminer le rapport de la longueur du segment BC, la sous-tangente, sur la longueur du segment AB, labscisse du point de tangence P.

8 Indivisibles et exhaustion Torricelli connaissait bien les travaux dArchimède, de Galilée et de Cavalieri. Il semble insatisfait des preuves obtenues par la méthode de Cavalieri, qui se préoccupait peu de la rigueur mathématique et des difficultés logiques soulevées par les indivisibles. Il développe donc des preuves en utilisant la méthode dArchimède, en complément à celles obtenues par les indivisibles de Cavalieri. Torricelli a déterminé la longueur de larc dune cycloïde, a utilisé le calcul pour déterminer, dans le plan dun triangle, le point dont la somme des distances aux sommets est minimum et a étudié le mouvement des projectiles.

9 Volume fini daire infinie En 1641, il a montré quune aire infinie, comme celle sous la parabole xy = a 2 et x = b pouvait engendrer un solide de volume fini par révolution autour de laxe des x. Il démontre ce résultat par la méthode des indivisibles et par exhaustion. Torricelli était très heureux de ce résultat car il croyait être le premier à découvrir une caractéristique de cette nature, mais Oresme, Fermat et Roberval avaient prévu des résul- tats semblables.

10 Conclusion Torricelli sest intéressé à des problèmes qui passionnaient tous les savants de cette époque : la recherche de méthodes pour déterminer la tangente à une courbe, laire dune surface et le volume dun solide. Il sest également intéressé à la pression atmosphérique et a réalisé la première expérience démontrant leffet de celle-ci sur une colonne de mercure. Dans la recherche des tangentes, il utilise à la fois des procédés géométriques et des procédés mécaniques. Dans le calcul daires et de volumes, il utilise la méthode des indivisibles et la méthode dexhaustion. Il est parvenu à plusieurs résultats intéressants qui font maintenant partie du calcul différentiel et intégral

11 Bibliographie Fin Boyer, Carl B. A History of Mathematics, New York, John Wiley & Sons, 1968, 717 p. Collette, Jean-Paul. Histoire des mathématiques, Montréal, Éditions du Renouveau Pédagogique Inc., vol., 587 p. Davis, Philip J, Hersh, Reuben, Marchisotto, Elena Anne. The Mathematical Experience, Study edition, Boston, Birkhäuser, 1995, 485 p. Dunham, William. The Mathematical Universe, New York, John Wiley & Sons, Inc., 1994, 314 p. Eves, Howard. An Introduction to the History of Mathematics, New- York, Holt Rinehart and Winston, 1976, 588 p. Kline, Morris. Mathematical Thought from Ancient to Modern Times, New York, Oxford University Press, 1972, 1238 p. Smith, David Eugene. History of Mathematics, New York, Dover Publications, Inc. 1958, 2 vol p. Struik, David. A Concise History of Mathematics, New York, Dover Publications, Inc. 1967, 195 p. Torricelli


Télécharger ppt "Evangelista Torricelli Evangelista Torricelli 1608 - 1647 Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon."

Présentations similaires


Annonces Google