La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Comment utiliser les rapport trigonométriques pour résoudre des problèmes Étape par Étape.

Présentations similaires


Présentation au sujet: "Comment utiliser les rapport trigonométriques pour résoudre des problèmes Étape par Étape."— Transcription de la présentation:

1 Comment utiliser les rapport trigonométriques pour résoudre des problèmes Étape par Étape

2 Sin Cest le nom pour le rapport trigonométrique de Chaque triangle rectangle avec 30° a le même opp/hyp qui on dit SIN 30° Cest le longueur du côté oppose divise par le longueur de lhypoténuse Opp Hyp

3 Sin Chaque triangle rectangle avec une angle de référence de 40° as le même opp/hyp qui on dit SIN 40° Chaque triangle rectangle avec une angle de référence de 70° as le même opp/hyp qui on dit SIN 70° Chaque triangle rectangle avec une angle de référence de 2° as le même opp/hyp qui on dit SIN 2°

4 Cos Cest le nom pour le rapport trigonométrique de Chaque triangle rectangle avec une angle de référence de 30° as le même adj/hyp qui on dit COS 30° Cest le longueur du côté adjacent divise par le longueur de lhypoténuse Adj Hyp

5 Cos Chaque triangle rectangle avec une angle de référence de 10° as le même adj/hyp qui on dit COS 10° Chaque triangle rectangle avec une angle de référence de 80° as le même adj/hyp qui on dit COS 80° Chaque triangle rectangle avec une angle de référence de 89° as le même adj/hyp qui on dit COS 89°

6 Tan Cest le nom pour le rapport trigonométrique de Chaque triangle rectangle avec une angle de référence de 30° as le même opp/adj qui on dit TAN 30° Cest le longueur du côté oppose divise par le longueur côté adjacent Opp Adj

7 Tan Chaque triangle rectangle avec une angle de référence de 15° as le même opp/adj qui on dit TAN 15° Chaque triangle rectangle avec une angle de référence de 35° as le même opp/adj qui on dit TAN 35° Chaque triangle rectangle avec une angle de référence de 65° as le même opp/adj qui on dit TAN 65°

8 Sin, Cos, Tan Pour chaque angle dans une triangle rectangle, il y –des rapport qui ne change pas nimporte quel taille de triangle –un côté –un autre côté Si tu as deux, tu peux trouve le troisième

9 1.Résous ce triangle pour trouver la longueur du côté x 17,4 cm x 23° Tu dois trouver la longueur du côté opposé. Tu sais la longueur de lhypoténuse. Est-ce que tu utilises SIN, COS ou TAN? Parce que tu cherches le côté opposé et tu sais lhypoténuse, tu choisis SIN. Tu utilises SIN parce que SIN est le rapport entre lopposé et lhypoténuse. Tu as appris que: SIN = opposé COS = adjacent TAN = opposé hypoténuse hypoténuse adjacent

10 x 17,4 cm 23° Tu as choisi SIN donc tu écris: SIN 23° = longueur du côté opposé longueur de lhypoténuse SIN 23 ° = x. 17,4 Utilise ta calculatrice: Appuie sur 2 et 3 et puis appuie sur les bouton SIN Sur ton écran, tu vois : 0, Tu peux arrondir ce rapport à 0,3907. Dans léquation, remplace SIN 23 ° par 0,3907 0,3907 = x. Fais la multiplcation à travers (cross multiply) 17,4 (0,3907) (17,4) = x 6,79818 = x La longueur du côté x est 6,8 cm

11 2. Résous ce triangle pour trouver la mesure de langle ө. 12,8 m 15,1 m ө Tu sais la longueur du côté adjacent à angle ө Tu sais la longueur de lhypoténuse. Est-ce que tu utilises SIN, COS ou TAN? Tu as appris que: SIN = opposé COS = adjacent TAN = opposé hypoténuse hypoténuse adjacent Parce que tu sais le côté adjacent et tu sais lhypoténuse, tu choisis COS. Tu utilises COS parce que COS est le rapport entre ladjacent et lhypoténuse.

12 Tu as choisi COS donc tu écris: COS ө = longueur du côté adjacent longueur de lhypoténuse COS ө = 12,8. 15,1 ө 12,8 m 15,1 m Utilise ta calculatrice: Divise 12,8 par 15,1 = 0, Puis appuie sur les bouton « 2 nd ». Puis appuie sur le bouton COS La réponse est « 32, » SIN ө = 0, ө = 32, ө = 32,0 Langle ө mesure 32,0 °

13 Travail Fini les questions de hier –Pg 234, # 1,3,5,7,8 Fait pg 236, # 9, 12, 13a, 14, 15, 16


Télécharger ppt "Comment utiliser les rapport trigonométriques pour résoudre des problèmes Étape par Étape."

Présentations similaires


Annonces Google