La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Mesures d'association: La corrélation par paire Mitchell Brown Université d'Auburn This material is distributed under an Attribution-NonCommercial-ShareAlike.

Présentations similaires


Présentation au sujet: "Mesures d'association: La corrélation par paire Mitchell Brown Université d'Auburn This material is distributed under an Attribution-NonCommercial-ShareAlike."— Transcription de la présentation:

1 Mesures d'association: La corrélation par paire Mitchell Brown Université d'Auburn This material is distributed under an Attribution-NonCommercial-ShareAlike 3.0 Unported Creative Commons License, the full details of which may be found online here: You may re-use, edit, or redistribute the content provided that the original source is cited, it is for non-commercial purposes, and provided it is distributed under a similar license.http://creativecommons.org/licenses/by-nc-sa/3.0/

2 La covariance La covariance est une mesure dassociation entre deux variables aléatoires. OU Cov(x,y) = (les produits moyens de XY) – (la moyenne de X)(la moyenne de Y)

3 Le calcul de la covariance XYXY Moyenne = 2.4Moyenne = 9.6Moyenne =22.8 Cov= 22.8 – (2.4)(9.6) = -0.24

4 La corrélation Symbole et formule ρ pour la population r pour l'échantillon ρ = σxy /(σx σy)

5 Le calcul des corrélations XYXY Moyenne = 2.4Moyenne = 9.6Moyenne =22.8 Écart-type = 1.72Écart-type = 3.32 Cov= 22.8 – (2.4)(9.6) = r= / [(1.02)(3.32)] =

6 L'interprétation des résultats La statistique rho est: Indépendante des échelles de mesure des variables X et Y, et Limitée par -1 et 1, où – 0 indique l'absence de relation – -1 indique une relation négative parfaite (quand X augmente, Y diminue) – 1 indique une relation positive parfaite (quand X augmente, Y augmente) Rho possède ses propres distribution et signification

7 Rho = 1

8 Rho = -1

9 Rho =.96

10 Limitations Vous donne seulement des informations sur la linéarité de la relation. En d'autres termes, une forte corrélation est un signe d`une relation purement mathématique, pas une de causalité. Cependant, la recherche des corrélations élevées entre les variables est un très bon moyen de commencer à tester vos idées pour savoir si les variables ont des effets de causalité les unes sur les autres ou pas.

11 Rho = 0

12 Rho=.96

13 Les mêmes données avec l'étendue plus étroite

14 L'ampleur des relations


Télécharger ppt "Mesures d'association: La corrélation par paire Mitchell Brown Université d'Auburn This material is distributed under an Attribution-NonCommercial-ShareAlike."

Présentations similaires


Annonces Google