La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Marc Gengler

Présentations similaires


Présentation au sujet: "Marc Gengler"— Transcription de la présentation:

1

2 Marc Gengler Marc.Gengler@esil.univ-mrs.fr
Cours de graphes Marc Gengler Alexandra Bac Sébastien Fournier 12h de cours 12h de TD des devoirs … et un examen St Valentin 2006 Cours de graphes 1 - Intranet

3 Les grandes lignes du cours
Définitions de base Connexité Les plus courts chemins Dijkstra et Bellmann-Ford Arbres Arbres de recouvrement minimaux Problèmes de flots Coloriage de graphes Couplage Chemins d’Euler et de Hamilton Problèmes NP-complets St Valentin 2006 Cours de graphes 1 - Intranet

4 Cours de graphes 1 - Intranet
Bibliographie Tout ce qui contient - graphes, graphs. Internet - souvent, c’est trop simplifié ou trop dense, - et pas toujours correct. Mes choix - Introduction to Algorithms, Leiserson et al. - Algorithms, Sedgewick. - Fundamental Algorithms, Knuth. - Graphes, Berge. St Valentin 2006 Cours de graphes 1 - Intranet

5 Les grandes lignes du cours
Définitions de base Connexité Les plus courts chemins Dijkstra et Bellmann-Ford Arbres Arbres de recouvrement minimaux Problèmes de flots Coloriage de graphes Couplage Chemins d’Euler et de Hamilton Problèmes NP-complets St Valentin 2006 Cours de graphes 1 - Intranet

6 Cours de graphes 1 - Intranet
Définitions de base Il y a des sommets ! (vertex, vertices) St Valentin 2006 Cours de graphes 1 - Intranet

7 Cours de graphes 1 - Intranet
Définitions de base Il y a des sommets ! (vertex, vertices) Il y a des arêtes ! (edge) St Valentin 2006 Cours de graphes 1 - Intranet

8 Cours de graphes 1 - Intranet
Définitions de base Il y a des sommets ! (vertex, vertices) Il y a des arêtes ! (edge) Il y a des arcs ! (arc) St Valentin 2006 Cours de graphes 1 - Intranet

9 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. St Valentin 2006 Cours de graphes 1 - Intranet

10 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. St Valentin 2006 Cours de graphes 1 - Intranet

11 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . St Valentin 2006 Cours de graphes 1 - Intranet

12 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. St Valentin 2006 Cours de graphes 1 - Intranet

13 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. Tous des couples ( a , a ) ! St Valentin 2006 Cours de graphes 1 - Intranet

14 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. Tous des couples ( a , a ) ! Aucun couple ( a , a ) ! St Valentin 2006 Cours de graphes 1 - Intranet

15 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. « E » peut être symétrique, anti-symétrique ou ni - ni. St Valentin 2006 Cours de graphes 1 - Intranet

16 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. « E » peut être symétrique, anti-symétrique ou ni - ni. ( a , b ) ssi ( b , a ) ! St Valentin 2006 Cours de graphes 1 - Intranet

17 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. « E » peut être symétrique, anti-symétrique ou ni - ni. ( a , b ) ssi ( b , a ) ! Si ( a , b ) avec a = b alors pas ( b , a ) ! / St Valentin 2006 Cours de graphes 1 - Intranet

18 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. « E » peut être symétrique, anti-symétrique ou ni - ni. Graphe non orienté ! Graphe orienté ! St Valentin 2006 Cours de graphes 1 - Intranet

19 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. « E » peut être symétrique, anti-symétrique ou ni - ni. « E » peut être transitive, ou non-transitive. St Valentin 2006 Cours de graphes 1 - Intranet

20 Cours de graphes 1 - Intranet
Définitions de base Formellement : Il y a l’ensemble « V » des sommets. Il y en a « n », c’est-à-dire | V | . La complexité est fonction du nombre de sommets. Il y a l’ensemble « E » des arcs et arêtes. C’est une partie du produit cartésien V x V . « E » peut être réflexif, irréflexif ou ni l’un, ni l’autre. « E » peut être symétrique, anti-symétrique ou ni - ni. « E » peut être transitive, ou non-transitive. Si ( a , b ) et ( b , c ) alors (a , c ) ! St Valentin 2006 Cours de graphes 1 - Intranet

21 Cours de graphes 1 - Intranet
Définitions de base Formellement : G = ( V , E ) Un graphe est donné par les ensembles « V » et « E ». St Valentin 2006 Cours de graphes 1 - Intranet

22 Cours de graphes 1 - Intranet
Définitions de base Formellement : G = ( V , E ) Un graphe est donné par les ensembles « V » et « E ». Il y a des multi-graphes qui sont correspondent au cas où « E » est un multi-ensemble (plusieurs arêtes et/ou arcs entre deux sommets). St Valentin 2006 Cours de graphes 1 - Intranet

23 Cours de graphes 1 - Intranet
Définitions de base Formellement : G = ( V , E ) Un graphe est donné par les ensembles « V » et « E ». Il y a des multi-graphes qui sont correspondent au cas où « E » est un multi-ensemble (plusieurs arêtes et/ou arcs entre deux sommets). Il y a des graphes pondérés qui correspondent au fait l’on attache des poids aux arcs ou arêtes (entiers par exemple). 12 25 15 St Valentin 2006 Cours de graphes 1 - Intranet

24 Cours de graphes 1 - Intranet
Définitions de base Sous-graphe G’ d’un graphe G : Le graphe G’ = ( V’ , E’ ) est un sous-graphe du graphe G = ( V , E ) , si : V’ V les sommets de G’ sont parmi ceux de G E’ E V’ x V’ les arcs et arêtes de G’ sont parmi ceux et celles de G et se limitent aux sommets de G’. U U v St Valentin 2006 Cours de graphes 1 - Intranet

25 Cours de graphes 1 - Intranet
Définitions de base Représentation des données : Nous indexons (numérotons) les sommets. Nous représentons les arcs et les arêtes. St Valentin 2006 Cours de graphes 1 - Intranet

26 Cours de graphes 1 - Intranet
Définitions de base Représentation des données : Nous indexons (numérotons) les sommets. Nous représentons les arcs et les arêtes. Nous obtenons une matrice « M » de taille n x n qui comporte des valeurs binaires. M( a , b ) est vrai si et seulement si l’arc ( a , b ) existe ! St Valentin 2006 Cours de graphes 1 - Intranet

27 Cours de graphes 1 - Intranet
Définitions de base St Valentin 2006 Cours de graphes 1 - Intranet

28 Cours de graphes 1 - Intranet
Définitions de base 4 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

29 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 1 2 3 4 5 6 4 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

30 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 1 2 L’existence ou non de l’arc ( 2 , 5 ) ! ! ! 3 4 5 4 6 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

31 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 1 2 3 4 5 6 4 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

32 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La diagonale parle des couples ( u , u ) ! 1 2 3 4 5 6 F F F F F 4 V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

33 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La diagonale parle des couples ( u , u ) ! 1 2 3 4 5 6 F F V Les arêtes ( 2 , 4 ) et ( 3 , 5 ) sont symétriques ! F V V F V F 4 V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

34 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La diagonale parle des couples ( u , u ) ! 1 2 3 4 5 6 F F V Les arêtes ( 2 , 4 ) et ( 3 , 5 ) sont symétriques ! F V V F V F 4 V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

35 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La diagonale parle des couples ( u , u ) ! 1 2 3 4 5 6 F V F V Les arêtes ( 2 , 4 ) et ( 3 , 5 ) sont symétriques ! F V V V F Les arcs ( 1 , 4 ) et ( 4 , 1 ) donnent aussi une symétrie ! V F 4 V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

36 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La diagonale parle des couples ( u , u ) ! 1 2 3 4 5 6 F V F V Les arêtes ( 2 , 4 ) et ( 3 , 5 ) sont symétriques ! F V V V F Les arcs ( 1 , 4 ) et ( 4 , 1 ) donnent aussi une symétrie ! V F 4 V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

37 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La diagonale parle des couples ( u , u ) ! 1 2 3 4 5 6 F V F V Les arêtes ( 2 , 4 ) et ( 3 , 5 ) sont symétriques ! F V V V V F Les arcs ( 1 , 4 ) et ( 4 , 1 ) donnent aussi une symétrie ! V F 4 V V 1 Les arcs ( 4 , 3 ) et ( 6 , 3 ) n’ont pas leur pendant symétrique ! ! ! 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

38 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La diagonale parle des couples ( u , u ) ! 1 2 3 4 5 6 F V F V Les arêtes ( 2 , 4 ) et ( 3 , 5 ) sont symétriques ! F F V F V V V F Les arcs ( 1 , 4 ) et ( 4 , 1 ) donnent aussi une symétrie ! V F 4 V V 1 Les arcs ( 4 , 3 ) et ( 6 , 3 ) n’ont pas leur pendant symétrique ! ! ! 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

39 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La diagonale parle des couples ( u , u ) ! 1 2 3 4 5 6 F F F V F F F F F V F F Les arêtes ( 2 , 4 ) et ( 3 , 5 ) sont symétriques ! F F F F V F V V V F F F Les arcs ( 1 , 4 ) et ( 4 , 1 ) donnent aussi une symétrie ! F F V F F F 4 F F V F F V 1 Les arcs ( 4 , 3 ) et ( 6 , 3 ) n’ont pas leur pendant symétrique ! ! ! 6 2 Il faut n^2 bits ! 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

40 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Pour des multi-graphes, nous remplaçons les booléens par des multiplicités ! 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F Pour des graphes pondérés, nous remplaçons les booléens par des poids ! V V V F F F F F V F F F 4 F F V F F V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

41 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F F F V F F V Parfois, le graphe est peu dense ! Nous mémorisons juste les indices des colonnes différentes de Faux ! St Valentin 2006 Cours de graphes 1 - Intranet

42 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 4 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F F F V F F V Parfois, le graphe est peu dense ! Nous mémorisons juste les indices des colonnes différentes de Faux ! St Valentin 2006 Cours de graphes 1 - Intranet

43 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 4 1 2 3 4 5 6 F F F V F F F F F V F F 4 F F F F V F V V V F F F F F V F F F F F V F F V Parfois, le graphe est peu dense ! Nous mémorisons juste les indices des colonnes différentes de Faux ! St Valentin 2006 Cours de graphes 1 - Intranet

44 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 4 1 2 3 4 5 6 F F F V F F F F F V F F 4 F F F F V F 5 V V V F F F 1 2 3 F F V F F F 3 F F V F F V 3 6 Parfois, le graphe est peu dense ! Nous mémorisons juste les indices des colonnes différentes de Faux ! St Valentin 2006 Cours de graphes 1 - Intranet

45 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 4 1 2 3 4 5 6 F F F V F F F F F V F F 4 F F F F V F 5 V V V F F F 1 2 3 F F V F F F 3 F F V F F V 3 6 Parfois, le graphe est peu dense ! Nous mémorisons juste les indices des colonnes différentes de Faux ! St Valentin 2006 Cours de graphes 1 - Intranet

46 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 4 1 2 3 4 5 6 F F F V F F F F F V F F 4 F F F F V F 5 V V V F F F 1 2 3 F F V F F F 3 F F V F F V 3 6 Parfois, le graphe est peu dense ! Nous mémorisons juste les indices des colonnes différentes de Faux ! Il faut ( | V | + | E | ) * log( | V | ) bits ! St Valentin 2006 Cours de graphes 1 - Intranet

47 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Les voisins d’un sommet « u » : Les voisins sortants : V+ ( u ) Les voisins entrants : V- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F F F V F F V St Valentin 2006 Cours de graphes 1 - Intranet

48 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Les voisins d’un sommet « u » : Les voisins sortants : V+ ( u ) Les voisins entrants : V- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F F F V F F V V+ ( u ) = { v e V | ( u , v ) e E } V- ( u ) = { v e V | ( v , u ) e E } St Valentin 2006 Cours de graphes 1 - Intranet

49 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Les voisins d’un sommet « u » : Les voisins sortants : V+ ( u ) Les voisins entrants : V- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F V+ ( 4 ) = { 1 , 2 , 3 } F F V F F V V+ ( u ) = { v e V | ( u , v ) e E } V- ( u ) = { v e V | ( v , u ) e E } St Valentin 2006 Cours de graphes 1 - Intranet

50 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Les voisins d’un sommet « u » : Les voisins sortants : V+ ( u ) Les voisins entrants : V- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F V+ ( 4 ) = { 1 , 2 , 3 } F F V F F V V- ( 3 ) = { 4 , 5 , 6 } V+ ( u ) = { v e V | ( u , v ) e E } V- ( u ) = { v e V | ( v , u ) e E } St Valentin 2006 Cours de graphes 1 - Intranet

51 Si le graphe est symétrique :
Définitions de base 1 2 3 4 5 6 Les voisins d’un sommet « u » : Les voisins sortants : V+ ( u ) Les voisins entrants : V- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F V+ ( 4 ) = { 1 , 2 , 3 } F F V F F V V- ( 3 ) = { 4 , 5 , 6 } Si le graphe est symétrique : V ( u ) = V+ ( u ) = V- ( u ) V+ ( u ) = { v e V | ( u , v ) e E } V- ( u ) = { v e V | ( v , u ) e E } St Valentin 2006 Cours de graphes 1 - Intranet

52 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Le degré d’un sommet « u » : Le degré sortant : D+ ( u ) Le degré entrant : D- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F F F V F F V St Valentin 2006 Cours de graphes 1 - Intranet

53 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Le degré d’un sommet « u » : Le degré sortant : D+ ( u ) Le degré entrant : D- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F F F V F F V D+ ( u ) = | V+ ( u ) | D- ( u ) = | V- ( u ) | St Valentin 2006 Cours de graphes 1 - Intranet

54 Si le graphe est symétrique :
Définitions de base 1 2 3 4 5 6 Le degré d’un sommet « u » : Le degré sortant : D+ ( u ) Le degré entrant : D- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F F F V F F V Si le graphe est symétrique : D ( u ) = D+ ( u ) = D- ( u ) D+ ( u ) = | V+ ( u ) | D- ( u ) = | V- ( u ) | St Valentin 2006 Cours de graphes 1 - Intranet

55 Si le graphe est symétrique :
Définitions de base 1 2 3 4 5 6 Le degré d’un sommet « u » : Le degré sortant : D+ ( u ) Le degré entrant : D- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F Le degré d’un graphe G = ( V , E ) : D( G ) = max { D ( u ) } F F V F F V u e V Si le graphe est symétrique : D ( u ) = D+ ( u ) = D- ( u ) D+ ( u ) = | V+ ( u ) | D- ( u ) = | V- ( u ) | St Valentin 2006 Cours de graphes 1 - Intranet

56 Le degré d'un graphe est souvent caractéristique
Définitions de base 1 2 3 4 5 6 Le degré d’un sommet « u » : Le degré sortant : D+ ( u ) Le degré entrant : D- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F Le degré d'un graphe est souvent caractéristique de la complexité d'un problème ! ! ! F F F F V F V V V F F F F F V F F F Le degré d’un graphe G = ( V , E ) : D( G ) = max { D ( u ) } F F V F F V u e V Si le graphe est symétrique : D ( u ) = D+ ( u ) = D- ( u ) D+ ( u ) = | V+ ( u ) | D- ( u ) = | V- ( u ) | St Valentin 2006 Cours de graphes 1 - Intranet

57 Cours de graphes 1 - Intranet
Définitions de base Les chemins : Un chemin, de longueur « n », du sommet « u » au sommet « v » est : ( w , , w ) 1 n+1 St Valentin 2006 Cours de graphes 1 - Intranet

58 Cours de graphes 1 - Intranet
Définitions de base Les chemins : Un chemin, de longueur « n », du sommet « u » au sommet « v » est : ( w , , w ) telle que u = w et v = w ( w , w ) est une arête ou un arc du graphe. 1 n+1 1 n+1 i i+1 St Valentin 2006 Cours de graphes 1 - Intranet

59 Cours de graphes 1 - Intranet
Définitions de base Les chemins : Un chemin, de longueur « n », du sommet « u » au sommet « v » est : ( w , , w ) telle que u = w et v = w ( w , w ) est une arête ou un arc du graphe. Le chemin est orienté s’il comporte des arcs, non orienté s’il est fait d’arêtes uniquement. 1 n+1 1 n+1 i i+1 St Valentin 2006 Cours de graphes 1 - Intranet

60 Cours de graphes 1 - Intranet
Définitions de base Notations et propriétés sur les chemins : Nous noterons ( c’est non standard ) : ( u , v ) l’arête ou l’arc, c’est-à-dire le chemin de longueur 1 . ( u ; v ) le chemin de longueur quelconque. St Valentin 2006 Cours de graphes 1 - Intranet

61 Cours de graphes 1 - Intranet
Définitions de base Notations et propriétés sur les chemins : Nous noterons ( c’est non standard ) : ( u , v ) l’arête ou l’arc, c’est-à-dire le chemin de longueur 1 . ( u ; v ) le chemin de longueur quelconque. Pour tout chemin non orienté ( u ; v ) du graphe G, nous pouvons construire le chemin ( v ; u ) dans G. St Valentin 2006 Cours de graphes 1 - Intranet

62 Cours de graphes 1 - Intranet
Définitions de base Notations et propriétés sur les chemins : Nous noterons ( c’est non standard ) : ( u , v ) l’arête ou l’arc, c’est-à-dire le chemin de longueur 1 . ( u ; v ) le chemin de longueur quelconque. Pour tout chemin non orienté ( u ; v ) du graphe G, nous pouvons construire le chemin ( v ; u ) dans G. Dans un graphe G, l’existence du chemin orienté ( u ; v ) n’implique pas l’existence d’un chemin de retour ( v ; u ) . St Valentin 2006 Cours de graphes 1 - Intranet

63 Cours de graphes 1 - Intranet
Définitions de base Cycles et circuits : Un chemin non orienté ( u ; v ) pour lequel « u » coïncide avec « v » est un cycle. St Valentin 2006 Cours de graphes 1 - Intranet

64 Cours de graphes 1 - Intranet
Définitions de base Cycles et circuits : Un chemin non orienté ( u ; v ) pour lequel « u » coïncide avec « v » est un cycle. u = v St Valentin 2006 Cours de graphes 1 - Intranet

65 Cours de graphes 1 - Intranet
Définitions de base Cycles et circuits : Un chemin non orienté ( u ; v ) pour lequel « u » coïncide avec « v » est un cycle. Un chemin orienté ( w ; t ) pour lequel « w » coïncide avec « t » est un circuit. u = v St Valentin 2006 Cours de graphes 1 - Intranet

66 Cours de graphes 1 - Intranet
Définitions de base Cycles et circuits : Un chemin non orienté ( u ; v ) pour lequel « u » coïncide avec « v » est un cycle. Un chemin orienté ( w ; t ) pour lequel « w » coïncide avec « t » est un circuit. u = v w = t St Valentin 2006 Cours de graphes 1 - Intranet

67 Cours de graphes 1 - Intranet
Définitions de base Chemins simples : Un chemin ( u ; v ) , où « u » est différent de « v », est simple si et seulement si aucun sommet n’est répété dans la séquence : ( u , , v ) St Valentin 2006 Cours de graphes 1 - Intranet

68 Cours de graphes 1 - Intranet
Définitions de base Chemins simples : Un chemin ( u ; v ) , où « u » est différent de « v », est simple si et seulement si aucun sommet n’est répété dans la séquence : ( u , , v ) Chemin simple ( u ; v ) u v St Valentin 2006 Cours de graphes 1 - Intranet

69 Cours de graphes 1 - Intranet
Définitions de base Chemins simples : Un chemin ( u ; v ) , où « u » est différent de « v », est simple si et seulement si aucun sommet n’est répété dans la séquence : ( u , , v ) Chemin simple ( u ; v ) u w v Chemin non simple ( w ; t ) St Valentin 2006 Cours de graphes 1 - Intranet t

70 Cours de graphes 1 - Intranet
Définitions de base Chemins simples : Un chemin ( u ; v ) , où « u » est différent de « v », est simple si et seulement si aucun sommet n’est répété dans la séquence : ( u , , v ) Chemin simple ( u ; v ) u w v Chemin non simple ( w ; t ) St Valentin 2006 Cours de graphes 1 - Intranet t

71 Cours de graphes 1 - Intranet
Définitions de base Lemme de König : De tout chemin non simple ( u ; v ) , nous pouvons extraire un chemin de « u » vers « v » qui est simple et plus court que le chemin initial. St Valentin 2006 Cours de graphes 1 - Intranet

72 Cours de graphes 1 - Intranet
Définitions de base Lemme de König : De tout chemin non simple ( u ; v ) , nous pouvons extraire un chemin de « u » vers « v » qui est simple et plus court que le chemin initial. u v St Valentin 2006 Cours de graphes 1 - Intranet

73 Cours de graphes 1 - Intranet
Définitions de base Lemme de König : De tout chemin non simple ( u ; v ) , nous pouvons extraire un chemin de « u » vers « v » qui est simple et plus court que le chemin initial. u v St Valentin 2006 Cours de graphes 1 - Intranet

74 Cours de graphes 1 - Intranet
Définitions de base Lemme de König : De tout chemin non simple ( u ; v ) , nous pouvons extraire un chemin de « u » vers « v » qui est simple et plus court que le chemin initial. ( u , , w , , w , t , , v ) t u w v St Valentin 2006 Cours de graphes 1 - Intranet

75 Cours de graphes 1 - Intranet
Définitions de base Lemme de König : De tout chemin non simple ( u ; v ) , nous pouvons extraire un chemin de « u » vers « v » qui est simple et plus court que le chemin initial. ( u , , w , , w , t , , v ) t u w v St Valentin 2006 Cours de graphes 1 - Intranet

76 Cours de graphes 1 - Intranet
Définitions de base Lemme de König : De tout chemin non simple ( u ; v ) , nous pouvons extraire un chemin de « u » vers « v » qui est simple et plus court que le chemin initial. ( u , , w , , w , t , , v ) t u De tout cycle ou circuit nous pouvons extraire un cycle ou circuit élémentaire ! w v St Valentin 2006 Cours de graphes 1 - Intranet

77 Je parlerai souvent de "chemin" et je sous-entendrai "simple" ! ! !
Définitions de base Lemme de König : De tout chemin non simple ( u ; v ) , nous pouvons extraire un chemin de « u » vers « v » qui est simple et plus court que le chemin initial. ( u , , w , , w , t , , v ) Je parlerai souvent de "chemin" et je sous-entendrai "simple" ! ! ! t u De tout cycle ou circuit nous pouvons extraire un cycle ou circuit élémentaire ! w v St Valentin 2006 Cours de graphes 1 - Intranet

78 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La composante connexe de « u » : La composante sortante : C+ ( u ) La composante entrante : C- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F 4 F F V F F V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

79 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La composante connexe de « u » : La composante sortante : C+ ( u ) La composante entrante : C- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F F F V F F F 4 F F V F F V 1 C+ ( u ) = { v e V | ( u ; v ) existe } C- ( u ) = { v e V | ( v ; u ) existe } 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

80 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La composante connexe de « u » : La composante sortante : C+ ( u ) La composante entrante : C- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F C+ ( 4 ) = { 1 , 2 , 3 , 4 , 5 } F F V F F F 4 F F V F F V 1 C+ ( u ) = { v e V | ( u ; v ) existe } C- ( u ) = { v e V | ( v ; u ) existe } 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

81 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 La composante connexe de « u » : La composante sortante : C+ ( u ) La composante entrante : C- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F C+ ( 4 ) = { 1 , 2 , 3 , 4 , 5 } F F V F F F C- ( 4 ) = { 1 , 2 , 4 } 4 F F V F F V 1 C+ ( u ) = { v e V | ( u ; v ) existe } C- ( u ) = { v e V | ( v ; u ) existe } 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

82 Si G est symétrique : C ( u ) = C+ ( u ) = C- ( u )
Définitions de base 1 2 3 4 5 6 La composante connexe de « u » : La composante sortante : C+ ( u ) La composante entrante : C- ( u ) 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V V F F F C+ ( 4 ) = { 1 , 2 , 3 , 4 , 5 } F F V F F F C- ( 4 ) = { 1 , 2 , 4 } 4 F F V F F V 1 C+ ( u ) = { v e V | ( u ; v ) existe } C- ( u ) = { v e V | ( v ; u ) existe } 6 2 Si G est symétrique : C ( u ) = C+ ( u ) = C- ( u ) 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

83 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe non orienté : La composante connexe de « u » est : réflexive, vous pouvez rester où vous êtes ! St Valentin 2006 Cours de graphes 1 - Intranet

84 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe non orienté : La composante connexe de « u » est : réflexive, vous pouvez rester où vous êtes ! symétrique, les chemins de retour existent ! St Valentin 2006 Cours de graphes 1 - Intranet

85 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe non orienté : La composante connexe de « u » est : réflexive, vous pouvez rester où vous êtes ! symétrique, les chemins de retour existent ! transitive, vous pouvez concaténer des chemins ! St Valentin 2006 Cours de graphes 1 - Intranet

86 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe non orienté : La composante connexe de « u » est : réflexive, vous pouvez rester où vous êtes ! symétrique, les chemins de retour existent ! transitive, vous pouvez concaténer des chemins ! Une composante connexe est une classe d’équivalence ! St Valentin 2006 Cours de graphes 1 - Intranet

87 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe non orienté : La composante connexe de « u » est : réflexive, vous pouvez rester où vous êtes ! symétrique, les chemins de retour existent ! transitive, vous pouvez concaténer des chemins ! Une composante connexe est une classe d’équivalence ! Un graphe non orienté est partitionné en ses classes d’équivalence ! St Valentin 2006 Cours de graphes 1 - Intranet

88 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 F F F V F F F F F V F F F F F F V F V V F F F F F F V F F F 4 F F F F F V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

89 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 F F F V F F F F F V F F Nous fermons réflexivement ! F F F F V F V V F F F F F F V F F F 4 F F F F F V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

90 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 F F F V F F F F F V F F Nous fermons réflexivement ! F F F F V F V V F F F F F F V F F F 4 F F F F F V 1 6 La fermeture réflexive d’une relation « R » est la plus petite relation réflexive qui contienne « R ». 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

91 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V F F V F F F V F V F F Nous fermons réflexivement ! F F V F V F V V F V F F F F V F V F 4 F F F F F V 1 6 La fermeture réflexive d’une relation « R » est la plus petite relation réflexive qui contienne « R ». 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

92 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V F F V F F F V F V F F Nous fermons réflexivement ! F F V F V F Nous fermons transitivement ! V V F V F F F F V F V F 4 F F F F F V 1 6 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

93 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V F F V F F F V F V F F Nous fermons réflexivement ! F F V F V F Nous fermons transitivement ! V V F V F F F F V F V F 4 F F F F F V 1 6 La fermeture transitive d’une relation « R » est la plus petite relation transitive qui contienne « R ». 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

94 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V V F V F F V V F V F F Nous fermons réflexivement ! F F V F V F Nous fermons transitivement ! V V F V F F F F V F V F 4 F F F F F V 1 6 La fermeture transitive d’une relation « R » est la plus petite relation transitive qui contienne « R ». 2 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

95 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V V F V F F V V F V F F Nous fermons réflexivement ! F F V F V F Nous fermons transitivement ! V V F V F F F F V F V F 4 F F F F F V 1 6 2 { 1 , 2 , 4 } est une composante connexe ! 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

96 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V V F V F F V V F V F F Nous fermons réflexivement ! F F V F V F Nous fermons transitivement ! V V F V F F F F V F V F 4 F F F F F V 1 6 2 { 3 , 5 } est une composante connexe ! 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

97 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V V F V F F V V F V F F Nous fermons réflexivement ! F F V F V F Nous fermons transitivement ! V V F V F F F F V F V F 4 F F F F F V 1 6 2 { 6 } est une composante connexe ! 3 5 St Valentin 2006 Cours de graphes 1 - Intranet

98 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V V V F F F V V V F F F Nous fermons réflexivement ! V V V F F F Nous fermons transitivement ! F F F V V F F F F V V F 3 F F F F F V 1 6 Si nous renumérotons ! 2 4 5 St Valentin 2006 Cours de graphes 1 - Intranet

99 Cours de graphes 1 - Intranet
Définitions de base 1 2 3 4 5 6 Nous partons d’une relation symétrique ! 1 2 3 4 5 6 V V V F F F V V V F F F Nous fermons réflexivement ! V V V F F F Nous fermons transitivement ! F F F V V F F F F V V F 3 F F F F F V 1 6 Si nous renumérotons ! 2 4 5 St Valentin 2006 Cours de graphes 1 - Intranet

100 Cours de graphes 1 - Intranet
Définitions de base Principe de décomposition : Souvent, le traitement appliqué à un graphe non connexe consiste à appliquer ce même traitement indépendamment sur chacune des composantes connexes ! St Valentin 2006 Cours de graphes 1 - Intranet

101 Cours de graphes 1 - Intranet
Définitions de base Principe de décomposition : Souvent, le traitement appliqué à un graphe non connexe consiste à appliquer ce même traitement indépendamment sur chacune des composantes connexes ! Dans ce cas, on ne perd rien à supposer G connexe ! ! ! St Valentin 2006 Cours de graphes 1 - Intranet

102 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un sous-ensemble « X » des sommets d’un graphe orienté est fortement connexe si nous pouvons aller de n’importe quel sommet vers n’importe quel autre sommet. St Valentin 2006 Cours de graphes 1 - Intranet

103 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un sous-ensemble « X » des sommets d’un graphe orienté est fortement connexe si nous pouvons aller de n’importe quel sommet vers n’importe quel autre sommet. Proposition : Une composante est fortement connexe si et seulement si chaque sommet se trouve sur un circuit. St Valentin 2006 Cours de graphes 1 - Intranet

104 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un sous-ensemble « X » des sommets d’un graphe orienté est fortement connexe si nous pouvons aller de n’importe quel sommet vers n’importe quel autre sommet. Proposition : Une composante est fortement connexe si et seulement si chaque sommet se trouve sur un circuit. Preuve : => : Si ( u ; v ) existe, alors ( v ; u ) existe et donc ( u ; v ; u ) . St Valentin 2006 Cours de graphes 1 - Intranet

105 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un sous-ensemble « X » des sommets d’un graphe orienté est fortement connexe si nous pouvons aller de n’importe quel sommet vers n’importe quel autre sommet. Proposition : Une composante est fortement connexe si et seulement si chaque sommet se trouve sur un circuit. Preuve : => : Si ( u ; v ) existe, alors ( v ; u ) existe et donc ( u ; v ; u ) . <= : Soit ( u ; v ) de la forme ( u ; w ; v ). St Valentin 2006 Cours de graphes 1 - Intranet

106 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un sous-ensemble « X » des sommets d’un graphe orienté est fortement connexe si nous pouvons aller de n’importe quel sommet vers n’importe quel autre sommet. Proposition : Une composante est fortement connexe si et seulement si chaque sommet se trouve sur un circuit. Preuve : => : Si ( u ; v ) existe, alors ( v ; u ) existe et donc ( u ; v ; u ) . <= : Soit ( u ; v ) de la forme ( u ; w ; v ). Pour « w » bien choisi, le circuit ( w ; v ; w ) existe ! u w v St Valentin 2006 Cours de graphes 1 - Intranet

107 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un sous-ensemble « X » des sommets d’un graphe orienté est fortement connexe si nous pouvons aller de n’importe quel sommet vers n’importe quel autre sommet. Proposition : Une composante est fortement connexe si et seulement si chaque sommet se trouve sur un circuit. Preuve : => : Si ( u ; v ) existe, alors ( v ; u ) existe et donc ( u ; v ; u ) . <= : Soit ( u ; v ) de la forme ( u ; w ; v ). Pour « w » bien choisi, le circuit ( w ; v ; w ) existe ! Nous recommençons le raisonnement pour ( u ; w ) . u w v St Valentin 2006 Cours de graphes 1 - Intranet

108 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un graphe orienté est quasi-fortement connexe s’il existe un sommet depuis lequel nous pouvons atteindre tous les autres sommets. Un tel sommet sera appelé « racine ». St Valentin 2006 Cours de graphes 1 - Intranet

109 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un graphe orienté est quasi-fortement connexe s’il existe un sommet depuis lequel nous pouvons atteindre tous les autres sommets. Un tel sommet sera appelé « racine ». St Valentin 2006 Cours de graphes 1 - Intranet

110 Cours de graphes 1 - Intranet
Définitions de base Pour un graphe orienté : Un graphe orienté est quasi-fortement connexe s’il existe un sommet depuis lequel nous pouvons atteindre tous les autres sommets. Un tel sommet sera appelé « racine ». St Valentin 2006 Cours de graphes 1 - Intranet

111 Cours de graphes 1 - Intranet
Définitions de base Distances et diamètre : La distance « d ( u , v ) » entre un sommet « u » et un sommet « v » est : la longueur du plus court chemin (forcément simple) de « u » vers « v », si celui-ci existe, infini, sinon. St Valentin 2006 Cours de graphes 1 - Intranet

112 Cours de graphes 1 - Intranet
Définitions de base Distances et diamètre : La distance « d ( u , v ) » entre un sommet « u » et un sommet « v » est : la longueur du plus court chemin (forcément simple) de « u » vers « v », si celui-ci existe, infini, sinon. Le diamètre d’un graphe connexe est la distance entre ses sommets les plus éloignés : D ( G ) = max { d ( u , v ) } u , v e V St Valentin 2006 Cours de graphes 1 - Intranet

113 Cours de graphes 1 - Intranet
Définitions de base u v St Valentin 2006 Cours de graphes 1 - Intranet

114 Cours de graphes 1 - Intranet
Définitions de base u v Chemin simple de longueur 4 ! St Valentin 2006 Cours de graphes 1 - Intranet

115 Cours de graphes 1 - Intranet
Définitions de base u v Chemin simple de longueur 4 ! Le plus court chemin est de longueur 3 : d ( u , v ) = 3 St Valentin 2006 Cours de graphes 1 - Intranet

116 Cours de graphes 1 - Intranet
Définitions de base D ( G ) = 4 u v Chemin simple de longueur 4 ! Le plus court chemin est de longueur 3 : d ( u , v ) = 3 St Valentin 2006 Cours de graphes 1 - Intranet

117 Cours de graphes 1 - Intranet
Définitions de base Ecarts, centre et diamètre : L’écart « e ( u ) » d’un sommet « u » d’un graphe connexe est : la distance vers le sommet « v » le plus loin de « u » : e ( u ) = max { d ( u , v ) } v e V St Valentin 2006 Cours de graphes 1 - Intranet

118 Cours de graphes 1 - Intranet
Définitions de base Ecarts, centre et diamètre : L’écart « e ( u ) » d’un sommet « u » d’un graphe connexe est : la distance vers le sommet « v » le plus loin de « u » : e ( u ) = max { d ( u , v ) } Un sommet « u » est au centre de G si e ( u ) = min { e ( v ) } v e V v e V St Valentin 2006 Cours de graphes 1 - Intranet

119 Cours de graphes 1 - Intranet
Définitions de base Ecarts, centre et diamètre : L’écart « e ( u ) » d’un sommet « u » d’un graphe connexe est : la distance vers le sommet « v » le plus loin de « u » : e ( u ) = max { d ( u , v ) } Un sommet « u » est au centre de G si e ( u ) = min { e ( v ) } D ( G ) = max { e ( v ) } v e V v e V v e V St Valentin 2006 Cours de graphes 1 - Intranet

120 Cours de graphes 1 - Intranet
Définitions de base u e ( u ) = 3 St Valentin 2006 Cours de graphes 1 - Intranet

121 Cours de graphes 1 - Intranet
Définitions de base v u e ( u ) = 3 « v » est au centre car e ( v ) = 2 est minimal ! St Valentin 2006 Cours de graphes 1 - Intranet

122 Cours de graphes 1 - Intranet
Définitions de base D ( G ) = e ( w ) = 4 v w u e ( u ) = 3 « v » est au centre car e ( v ) = 2 est minimal ! St Valentin 2006 Cours de graphes 1 - Intranet

123 Cours de graphes 1 - Intranet
Définitions de base Lemme des plus courts chemins (De la Palisse) : Si le plus court chemin de « u » vers « v » passe par « w », alors la partie préfixe de « u » vers « w » est aussi le plus court chemin de « u » vers « w ». St Valentin 2006 Cours de graphes 1 - Intranet

124 Cours de graphes 1 - Intranet
Définitions de base Lemme des plus courts chemins (De la Palisse) : Si le plus court chemin de « u » vers « v » passe par « w », alors la partie préfixe de « u » vers « w » est aussi le plus court chemin de « u » vers « w ». Le plus court chemin de « u » à « v » ! u w v St Valentin 2006 Cours de graphes 1 - Intranet

125 Cours de graphes 1 - Intranet
Définitions de base Lemme des plus courts chemins (De la Palisse) : Si le plus court chemin de « u » vers « v » passe par « w », alors la partie préfixe de « u » vers « w » est aussi le plus court chemin de « u » vers « w ». Le plus court chemin de « u » à « v » ! u w v Le plus court chemin de « u » à « w » ! St Valentin 2006 Cours de graphes 1 - Intranet

126 Cours de graphes 1 - Intranet
Définitions de base Poids d’un chemin : Dans un graphe pondéré, le poids d’un chemin est la somme des poids de ses arcs et arêtes. St Valentin 2006 Cours de graphes 1 - Intranet

127 Cours de graphes 1 - Intranet
Définitions de base Poids d’un chemin : Dans un graphe pondéré, le poids d’un chemin est la somme des poids de ses arcs et arêtes. Nous pouvons alors, de manière évidente, définir le chemin le plus léger de « u » vers « v ». St Valentin 2006 Cours de graphes 1 - Intranet

128 Cours de graphes 1 - Intranet
Définitions de base Poids d’un chemin : Dans un graphe pondéré, le poids d’un chemin est la somme des poids de ses arcs et arêtes. Nous pouvons alors, de manière évidente, définir le chemin le plus léger de « u » vers « v ». Le chemin le plus léger (poids) ne coïncide pas forcément avec le chemin le plus court (nombre d’arcs et arêtes). St Valentin 2006 Cours de graphes 1 - Intranet

129 Cours de graphes 1 - Intranet
Définitions de base Poids d’un chemin : Dans un graphe pondéré, le poids d’un chemin est la somme des poids de ses arcs et arêtes. Nous pouvons alors, de manière évidente, définir le chemin le plus léger de « u » vers « v ». Le chemin le plus léger (poids) ne coïncide pas forcément avec le chemin le plus court (nombre d’arcs et arêtes). Les poids ne vérifient pas forcément l’inégalité triangulaire ! 25 12 10 St Valentin 2006 Cours de graphes 1 - Intranet

130 Si tous les poids sont unitaires, les
plus courts chemins coïncident avec les chemins les plus légers ! Définitions de base Poids d’un chemin : Dans un graphe pondéré, le poids d’un chemin est la somme des poids de ses arcs et arêtes. Nous pouvons alors, de manière évidente, définir le chemin le plus léger de « u » vers « v ». Le chemin le plus léger (poids) ne coïncide pas forcément avec le chemin le plus court (nombre d’arcs et arêtes). Les poids ne vérifient pas forcément l’inégalité triangulaire ! 25 12 10 St Valentin 2006 Cours de graphes 1 - Intranet

131 Si tous les poids sont unitaires, les
plus courts chemins coïncident avec les chemins les plus légers ! Définitions de base Poids d’un chemin : Dans un graphe pondéré, le poids d’un chemin est la somme des poids de ses arcs et arêtes. Nous pouvons alors, de manière évidente, définir le chemin le plus léger de « u » vers « v ». Le chemin le plus léger (poids) ne coïncide pas forcément avec le chemin le plus court (nombre d’arcs et arêtes). Les poids ne vérifient pas forcément l’inégalité triangulaire ! Souvent, on parle de plus court chemin alors qu'on pense au chemin le plus léger ! 25 12 10 St Valentin 2006 Cours de graphes 1 - Intranet

132 Cours de graphes 1 - Intranet
Connexité – plus courts chemins N O S P R E M I E R S A L G O R I T H M E S ! ! ! St Valentin 2006 Cours de graphes 1 - Intranet

133 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Sur un graphe non orienté, nous allons calculer : les composantes connexes ! St Valentin 2006 Cours de graphes 1 - Intranet

134 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Sur un graphe non orienté, nous allons calculer : les composantes connexes ! Sur une composante connexe, nous allons calculer : les plus courts chemins ! St Valentin 2006 Cours de graphes 1 - Intranet

135 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Sur un graphe non orienté, nous allons calculer : les composantes connexes ! Sur une composante connexe, nous allons calculer : les plus courts chemins ! Nous rajoutons une pondération strictement positive et nous allons calculer : les chemins les plus légers ! St Valentin 2006 Cours de graphes 1 - Intranet

136 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Nous utilisons trois algorithmes : un algorithme par « vague », c’est un parcours en largeur, St Valentin 2006 Cours de graphes 1 - Intranet

137 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Nous utilisons trois algorithmes : un algorithme par « vague », c’est un parcours en largeur, un algorithme par « multiplication de matrices », St Valentin 2006 Cours de graphes 1 - Intranet

138 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Nous utilisons trois algorithmes : un algorithme par « vague », c’est un parcours en largeur, un algorithme par « multiplication de matrices », l’algorithme de programmation dynamique « Floyd-Warshall » ! St Valentin 2006 Cours de graphes 1 - Intranet

139 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Nous utilisons trois algorithmes : un algorithme par « vague », c’est un parcours en largeur, un algorithme par « multiplication de matrices », l’algorithme de programmation dynamique « Floyd-Warshall » ! Pour chacun d’entre eux, il s’agit de savoir si : il arrive à résoudre le problème en question, quelle est la complexité du calcul ? St Valentin 2006 Cours de graphes 1 - Intranet

140 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La vague Multiplication Floyd-Warshall Connexité Plus courts Plus légers St Valentin 2006 Cours de graphes 1 - Intranet

141 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La vague Multiplication Floyd-Warshall OUI ou NON ? ? ? Quelle complexité ? ? ? Connexité Plus courts Plus légers St Valentin 2006 Cours de graphes 1 - Intranet

142 Cours de graphes 1 - Intranet
Connexité – plus courts chemins L’algorithme par vague : Nous choisissons un sommet sec et le mouillons, St Valentin 2006 Cours de graphes 1 - Intranet

143 Cours de graphes 1 - Intranet
Connexité – plus courts chemins L’algorithme par vague : Nous choisissons un sommet sec et le mouillons, nous mouillons ses voisins, St Valentin 2006 Cours de graphes 1 - Intranet

144 Cours de graphes 1 - Intranet
Connexité – plus courts chemins L’algorithme par vague : Nous choisissons un sommet sec et le mouillons, nous mouillons ses voisins, nous mouillons les voisins des voisins , . . . St Valentin 2006 Cours de graphes 1 - Intranet

145 C'est un parcours en largeur !
Connexité – plus courts chemins L’algorithme par vague : Nous choisissons un sommet sec et le mouillons, nous mouillons ses voisins, nous mouillons les voisins des voisins , . . . C'est un parcours en largeur ! St Valentin 2006 Cours de graphes 1 - Intranet

146 C'est un parcours en largeur !
Connexité – plus courts chemins L’algorithme par vague : Nous choisissons un sommet sec et le mouillons, nous mouillons ses voisins, nous mouillons les voisins des voisins , . . . Attention, dans un graphe il peut y avoir des cycles ! ! ! C'est un parcours en largeur ! St Valentin 2006 Cours de graphes 1 - Intranet

147 C'est un parcours en largeur !
Connexité – plus courts chemins L’algorithme par vague : Nous choisissons un sommet sec et le mouillons, nous mouillons ses voisins, nous mouillons les voisins des voisins , . . . Attention, dans un graphe il peut y avoir des cycles ! ! ! Il faut éviter de tourner en rond ! Ici, nous ne faisons rien pour un sommet déjà mouillé ! C'est un parcours en largeur ! St Valentin 2006 Cours de graphes 1 - Intranet

148 C'est un parcours en largeur !
Connexité – plus courts chemins L’algorithme par vague : Nous choisissons un sommet sec et le mouillons, nous mouillons ses voisins, nous mouillons les voisins des voisins , . . . Attention, dans un graphe il peut y avoir des cycles ! ! ! Il faut éviter de tourner en rond ! Ici, nous ne faisons rien pour un sommet déjà mouillé ! Complexité : Q ( | E | ) = O ( | V |^2 ) = O ( n^2 ) Chaque arête est visitée une et une seule fois ! C'est un parcours en largeur ! St Valentin 2006 Cours de graphes 1 - Intranet

149 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La vague Multiplication Floyd-Warshall Q ( | E | ) = O ( | V |^2 ) Connexité Plus courts Plus légers St Valentin 2006 Cours de graphes 1 - Intranet

150 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La multiplication de matrices : Nous prenons une matrice avec des « 0 » et des « 1 », St Valentin 2006 Cours de graphes 1 - Intranet

151 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La multiplication de matrices : Nous prenons une matrice avec des « 0 » et des « 1 », nous la fermons réflexivement (des « 1 » sur la diagonale), St Valentin 2006 Cours de graphes 1 - Intranet

152 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La multiplication de matrices : Nous prenons une matrice avec des « 0 » et des « 1 », nous la fermons réflexivement (des « 1 » sur la diagonale), nous effectuons le calcul suivant : M * M’ ( i , j ) = max M ( i , k ) * M’ ( k , j ) k St Valentin 2006 Cours de graphes 1 - Intranet

153 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La multiplication de matrices : Nous prenons une matrice avec des « 0 » et des « 1 », nous la fermons réflexivement (des « 1 » sur la diagonale), nous effectuons le calcul suivant : M * M’ ( i , j ) = max M ( i , k ) * M’ ( k , j ) Nous calculons : M -> M^2 -> M^4 -> k St Valentin 2006 Cours de graphes 1 - Intranet

154 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La multiplication de matrices : Nous prenons une matrice avec des « 0 » et des « 1 », nous la fermons réflexivement (des « 1 » sur la diagonale), nous effectuons le calcul suivant : M * M’ ( i , j ) = max M ( i , k ) * M’ ( k , j ) Nous calculons : M -> M^2 -> M^4 -> Propriété : M^( 2 * i ) = M^i * M^i contient tous les chemins de longueur au plus 2 * i . k St Valentin 2006 Cours de graphes 1 - Intranet

155 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La multiplication de matrices : Nous prenons une matrice avec des « 0 » et des « 1 », nous la fermons réflexivement (des « 1 » sur la diagonale), nous effectuons le calcul suivant : M * M’ ( i , j ) = max M ( i , k ) * M’ ( k , j ) Nous calculons : M -> M^2 -> M^4 -> Propriété : M^( 2 * i ) = M^i * M^i contient tous les chemins de longueur au plus 2 * i . Il suffit de calculer M^k avec k >= | V |-1 = n-1 (le plus long chemin possible; et donc tous les chemins) ! k St Valentin 2006 Cours de graphes 1 - Intranet

156 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La multiplication de matrices : Nous prenons une matrice avec des « 0 » et des « 1 », nous la fermons réflexivement (des « 1 » sur la diagonale), nous effectuons le calcul suivant : M * M’ ( i , j ) = max M ( i , k ) * M’ ( k , j ) Nous calculons : M -> M^2 -> M^4 -> Propriété : M^( 2 * i ) = M^i * M^i contient tous les chemins de longueur au plus 2 * i . Il suffit de calculer M^k avec k >= | V |-1 = n-1 (le plus long chemin possible; et donc tous les chemins) ! Il suffit de O ( log( | V | ) ) élévations au carré ! k St Valentin 2006 Cours de graphes 1 - Intranet

157 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. St Valentin 2006 Cours de graphes 1 - Intranet

158 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. Hypothèse d’induction : M^i contient tous les chemins de longueur au plus i . St Valentin 2006 Cours de graphes 1 - Intranet

159 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. Hypothèse d’induction : M^i contient tous les chemins de longueur au plus i . M^( 2 * i ) ( u , v ) = 1 St Valentin 2006 Cours de graphes 1 - Intranet

160 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. Hypothèse d’induction : M^i contient tous les chemins de longueur au plus i . M^( 2 * i ) ( u , v ) = 1  max_k M^i ( u , k ) * M^i ( k , v ) = 1 St Valentin 2006 Cours de graphes 1 - Intranet

161 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. Hypothèse d’induction : M^i contient tous les chemins de longueur au plus i . M^( 2 * i ) ( u , v ) = 1  max_k M^i ( u , k ) * M^i ( k , v ) = 1  $ w tel que M^i ( u , w ) * M^i ( w , v ) = 1 St Valentin 2006 Cours de graphes 1 - Intranet

162 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. Hypothèse d’induction : M^i contient tous les chemins de longueur au plus i . M^( 2 * i ) ( u , v ) = 1  max_k M^i ( u , k ) * M^i ( k , v ) = 1  $ w tel que M^i ( u , w ) * M^i ( w , v ) = 1  M^i ( u , w ) = 1 et M^i ( w , v ) = 1 St Valentin 2006 Cours de graphes 1 - Intranet

163 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. Hypothèse d’induction : M^i contient tous les chemins de longueur au plus i . M^( 2 * i ) ( u , v ) = 1  max_k M^i ( u , k ) * M^i ( k , v ) = 1  $ w tel que M^i ( u , w ) * M^i ( w , v ) = 1  M^i ( u , w ) = 1 et M^i ( w , v ) = 1  ( u ; w ) et ( w ; v ) sont de longueur au plus i St Valentin 2006 Cours de graphes 1 - Intranet

164 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. Hypothèse d’induction : M^i contient tous les chemins de longueur au plus i . M^( 2 * i ) ( u , v ) = 1  max_k M^i ( u , k ) * M^i ( k , v ) = 1  $ w tel que M^i ( u , w ) * M^i ( w , v ) = 1  M^i ( u , w ) = 1 et M^i ( w , v ) = 1  ( u ; w ) et ( w ; v ) sont de longueur au plus i  ( u ; w ; v ) est de longueur au plus 2 * i . St Valentin 2006 Cours de graphes 1 - Intranet

165 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Preuve de la propriété : La matrice M fermée réflexivement contient tous les chemins de longueur 0 ou 1. Hypothèse d’induction : M^i contient tous les chemins de longueur au plus i . M^( 2 * i ) ( u , v ) = 1  max_k M^i ( u , k ) * M^i ( k , v ) = 1  $ w tel que M^i ( u , w ) * M^i ( w , v ) = 1  M^i ( u , w ) = 1 et M^i ( w , v ) = 1  ( u ; w ) et ( w ; v ) sont de longueur au plus i  ( u ; w ; v ) est de longueur au plus 2 * i . On obtient bien-sûr tous les chemins ! St Valentin 2006 Cours de graphes 1 - Intranet

166 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La vague Multiplication Floyd-Warshall Q ( | E | ) = O ( | V |^2 ) Q ( | V |^3 * log( | V | ) ) Connexité Plus courts Plus légers St Valentin 2006 Cours de graphes 1 - Intranet

167 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Floyd-Warshall : La multiplication recalcule de façon répétée les chemins courts. Si M^i ( u , v ) = 1 : St Valentin 2006 Cours de graphes 1 - Intranet

168 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Floyd-Warshall : La multiplication recalcule de façon répétée les chemins courts. Si M^i ( u , v ) = 1 : M^( 2 * i ) ( u , v ) = max_k M^i ( u , k ) * M^i ( k , v ) = M^i ( u , u ) * M^i ( u , v ) = M^i ( u , v ) = 1 St Valentin 2006 Cours de graphes 1 - Intranet

169 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Floyd-Warshall : La multiplication recalcule de façon répétée les chemins courts. Si M^i ( u , v ) = 1 : M^( 2 * i ) ( u , v ) = max_k M^i ( u , k ) * M^i ( k , v ) = M^i ( u , u ) * M^i ( u , v ) = M^i ( u , v ) = 1 La DP numérote les sommets de « 1 » à « n » et : St Valentin 2006 Cours de graphes 1 - Intranet

170 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Floyd-Warshall : La multiplication recalcule de façon répétée les chemins courts. Si M^i ( u , v ) = 1 : M^( 2 * i ) ( u , v ) = max_k M^i ( u , k ) * M^i ( k , v ) = M^i ( u , u ) * M^i ( u , v ) = M^i ( u , v ) = 1 La DP numérote les sommets de « 1 » à « n » et : à l’étape (1), ne calcule que les chemins dont les intermédiaires sont dans l’ensemble { 1 }, St Valentin 2006 Cours de graphes 1 - Intranet

171 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Floyd-Warshall : La multiplication recalcule de façon répétée les chemins courts. Si M^i ( u , v ) = 1 : M^( 2 * i ) ( u , v ) = max_k M^i ( u , k ) * M^i ( k , v ) = M^i ( u , u ) * M^i ( u , v ) = M^i ( u , v ) = 1 La DP numérote les sommets de « 1 » à « n » et : à l’étape (1), ne calcule que les chemins dont les intermédiaires sont dans l’ensemble { 1 }, à l’étape (2), ne calcule que les chemins dont les intermédiaires sont dans l’ensemble { 1 , 2 }, St Valentin 2006 Cours de graphes 1 - Intranet

172 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) Initialement : M 2 1 3 Nous n’avons pas dessiné les boucles de la fermeture réflexive ! St Valentin 2006 Cours de graphes 1 - Intranet

173 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) Initialement : M 2 (1) 1 Etape 1 : M 3 Nous n’avons pas dessiné les boucles de la fermeture réflexive ! St Valentin 2006 Cours de graphes 1 - Intranet

174 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) Initialement : M 2 (1) 1 Etape 1 : M (2) Etape 2 : M 3 Nous n’avons pas dessiné les boucles de la fermeture réflexive ! St Valentin 2006 Cours de graphes 1 - Intranet

175 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Petit à petit, les uns . . . (0) Initialement : M 2 (1) 1 Etape 1 : M (2) Etape 2 : M (3) Etape 3 : M 3 Nous n’avons pas dessiné les boucles de la fermeture réflexive ! St Valentin 2006 Cours de graphes 1 - Intranet

176 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Petit à petit, les autres . . . (0) Initialement : M 2 (1) 1 Etape 1 : M (2) Etape 2 : M (3) Etape 3 : M 3 Nous n’avons pas dessiné les boucles de la fermeture réflexive ! St Valentin 2006 Cours de graphes 1 - Intranet

177 Cours de graphes 1 - Intranet
Connexité – plus courts chemins Petit à petit, finalement . . . (0) Initialement : M 2 (1) 1 Etape 1 : M (2) Etape 2 : M (3) Etape 3 : M 3 Nous n’avons pas dessiné les boucles de la fermeture réflexive ! St Valentin 2006 Cours de graphes 1 - Intranet

178 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) Initialement : M 2 (1) 1 Etape 1 : M (2) Etape 2 : M (3) Etape 3 : M 3 Nous n’avons pas dessiné les boucles de la fermeture réflexive ! St Valentin 2006 Cours de graphes 1 - Intranet

179 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) Initialement : M 2 (1) 1 Etape 1 : M (2) Etape 2 : M (3) Etape 3 : M 3 etc . . . Nous n’avons pas dessiné les boucles de la fermeture réflexive ! St Valentin 2006 Cours de graphes 1 - Intranet

180 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (k-1) M est donnée, elle comporte tous les chemins avec des intermédiaires parmi { 1 , , k-1 } . St Valentin 2006 Cours de graphes 1 - Intranet

181 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (k-1) M est donnée, elle comporte tous les chemins avec des intermédiaires parmi { 1 , , k-1 } . M ( u , v ) est un chemin de « u » vers « v » avec des intermédiaires parmi { 1 , , k } . (k) St Valentin 2006 Cours de graphes 1 - Intranet

182 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (k-1) M est donnée, elle comporte tous les chemins avec des intermédiaires parmi { 1 , , k-1 } . M ( u , v ) est un chemin de « u » vers « v » avec des intermédiaires parmi { 1 , , k } . Soit le sommet « k » figure dans ce chemin, soit il ne le fait pas. (k) St Valentin 2006 Cours de graphes 1 - Intranet

183 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (k-1) M est donnée, elle comporte tous les chemins avec des intermédiaires parmi { 1 , , k-1 } . M ( u , v ) est un chemin de « u » vers « v » avec des intermédiaires parmi { 1 , , k } . Soit le sommet « k » figure dans ce chemin, soit il ne le fait pas. (k) (k) (k-1) M ( u , v ) = M ( u , v ) St Valentin 2006 Cours de graphes 1 - Intranet

184 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (k-1) M est donnée, elle comporte tous les chemins avec des intermédiaires parmi { 1 , , k-1 } . M ( u , v ) est un chemin de « u » vers « v » avec des intermédiaires parmi { 1 , , k } . Soit le sommet « k » figure dans ce chemin, soit il ne le fait pas. u k v (k) (k) (k-1) M ( u , v ) = M ( u , v ) St Valentin 2006 Cours de graphes 1 - Intranet

185 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (k-1) M est donnée, elle comporte tous les chemins avec des intermédiaires parmi { 1 , , k-1 } . M ( u , v ) est un chemin de « u » vers « v » avec des intermédiaires parmi { 1 , , k } . Soit le sommet « k » figure dans ce chemin, soit il ne le fait pas. u k v (k) (k) (k-1) M ( u , v ) = M ( u , v ) e / k e / k St Valentin 2006 Cours de graphes 1 - Intranet

186 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (k-1) M est donnée, elle comporte tous les chemins avec des intermédiaires parmi { 1 , , k-1 } . M ( u , v ) est un chemin de « u » vers « v » avec des intermédiaires parmi { 1 , , k } . Soit le sommet « k » figure dans ce chemin, soit il ne le fait pas. u k v M ( u , k ) M ( k , v ) (k) (k) (k-1) M ( u , v ) = M ( u , v ) } } e / k e / k (k-1) (k-1) St Valentin 2006 Cours de graphes 1 - Intranet

187 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) M est la matrice d’adjacence, fermée réflexivement. Elle comporte des « 0 » et des « 1 ». St Valentin 2006 Cours de graphes 1 - Intranet

188 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) M est la matrice d’adjacence, fermée réflexivement. Elle comporte des « 0 » et des « 1 ». M ( u , v ) = max ( , ) (k) St Valentin 2006 Cours de graphes 1 - Intranet

189 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) M est la matrice d’adjacence, fermée réflexivement. Elle comporte des « 0 » et des « 1 ». M ( u , v ) = max ( , ) (k) (k-1) M ( u , v ) St Valentin 2006 Cours de graphes 1 - Intranet

190 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) M est la matrice d’adjacence, fermée réflexivement. Elle comporte des « 0 » et des « 1 ». M ( u , v ) = max ( , ) (k) (k-1) M ( u , v ) (k-1) (k-1) M ( u , k ) * M ( k , v ) St Valentin 2006 Cours de graphes 1 - Intranet

191 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) M est la matrice d’adjacence, fermée réflexivement. Elle comporte des « 0 » et des « 1 ». M ( u , v ) = max ( , ) M est la matrice recherchée ! (k) (k-1) M ( u , v ) (k-1) (k-1) M ( u , k ) * M ( k , v ) (n) St Valentin 2006 Cours de graphes 1 - Intranet

192 Cours de graphes 1 - Intranet
Connexité – plus courts chemins (0) M est la matrice d’adjacence, fermée réflexivement. Elle comporte des « 0 » et des « 1 ». M ( u , v ) = max ( , ) M est la matrice recherchée ! (k) (k-1) M ( u , v ) (k-1) (k-1) M ( u , k ) * M ( k , v ) (n) Pour k de 1 a | V | Pour u de 1 a | V | Pour v de 1 a | V | M_k ( u , v ) < St Valentin 2006 Cours de graphes 1 - Intranet

193 Cours de graphes 1 - Intranet
Connexité – plus courts chemins La vague Multiplication Floyd-Warshall Q ( | E | ) = O ( | V |^2 ) Q ( | V |^3 * log( | V | ) ) Q ( | V |^3 ) Connexité Plus courts Plus légers St Valentin 2006 Cours de graphes 1 - Intranet

194 La suite la semaine prochaine !
Connexité – plus courts chemins La vague Multiplication Floyd-Warshall Q ( | E | ) = O ( | V |^2 ) Q ( | V |^3 * log( | V | ) ) Q ( | V |^3 ) Connexité Plus courts La suite la semaine prochaine ! Plus légers St Valentin 2006 Cours de graphes 1 - Intranet

195 Cours de graphes 1 - Intranet
Synthèse Définitions de base Connexité : à l’aide de la vague, à l’aide de la multiplication, à l’aide de Floyd-Warshall. St Valentin 2006 Cours de graphes 1 - Intranet

196 Cours de graphes 1 - Intranet
m E r C i e T O n N e J o U r N é E ! ! ! ‘ o U b L i E z P a S d E p R é P a R e R v O s T D ! ! ! St Valentin 2006 Cours de graphes 1 - Intranet


Télécharger ppt "Marc Gengler"

Présentations similaires


Annonces Google