1 M1 MQSE 1 - L’outil statistique pour tirer des conclusions dans un monde de variabilité 2 - Utiliser la statistique: se confronter au hasard 3 - La statistique:

Slides:



Advertisements
Présentations similaires
5. Statistiques.
Advertisements

STATISTIQUE INFERENTIELLE L ’ESTIMATION
Inférence statistique
Notions de variable aléatoire et de probabilité d’un événement
La statistique Définitions et méthodes. La statistique est la branche des mathématiques qui collecte, classe, analyse et interprète des données afin den.
Simulation d’un processus de Poisson
Introduction: DEFINITION
STATISTIQUES DESCRIPTIVES
Micro-intro aux stats.
VARIABLES ET MESURES DE FREQUENCES Pr. KELLIL M 1.
STATISTIQUES DESCRIPTIVES
Intervalles de fluctuation et de confiance. Dans une population, la proportion d’individus ayant un caractère donné est notée p Population.
LES FRANÇAIS ET L’ONU. © Harris Interactive 2 SOMMAIRE > Méthodologie d’enquêteP.3 > Regard général sur l’ONUP.4 > Perception de l’action de l’ONU et.
M. Bétrancourt et C. Rebetez - Méthodologie expérimentale Diplôme MALTT Année La méthodologie expérimentale Fondements et bases d’application.
Schéma Cinématique.
BIOSTATISTIQUES Définitions.
BIOSTATISTIQUES Définitions.
ECHANTILLONAGE ET ESTIMATION
Introduction aux statistiques Intervalles de confiance
Les études descriptives J. Ateudjieu J Ateudjieu. Cours Epiconc Master's Epi et SP Université de Dschang.Fev
COMMENT REALISER UN SONDAGE AU CE ? Conférence présentée par : SONDAGES CE Marc KOGON Stand A17 Élus, gardez le contact avec les salariés.
1 M2 Biomatériaux- Cours n°3 1 - Rappels du cours n°1 et La statistique inférentielle Fluctuation d’échantillonnage, Théorème central limite Estimation.
Cours de Biostatistiques 14 avril 2012 Noémi ARDITI Delphine COUDRAY.
TP2: Statistique & Probabilité Intervalle de confiance et test d’hypothèses.
Les traitements par hormone de croissance - Congrès SFEDP- 2 juin 2005 Les traitements par hormone de croissance Damon MN, Pépin S, Ricatte M, Fender P,
1 Biostatistique et lecture critique d’articles médicaux Pr A Venot UFR SMBH Université Paris 13.
MSN 21 Représenter des figures planes à l’aide de croquis (triangle, carré, rectangle, cercle) Le croquis est à considérer comme support de réflexion Reconnaître.
 Champ des mathématiques  Ensemble de méthodes et de techniques  Permet une analyse objective  Facilitées aujourd’hui par les tableurs.
SCIENCE 9 Sciences et Technologie… Nokia Morph Phone Bombardier concepte Ordinateur concepte jouets.
Comment écrire un article scientifique Olivier MIMOZ DAR.
Plans d'expérience Méthode Taguchy Analyse de la variance Anavar.
LCA UFR SMBH (DCEM)1 Analyse critique d ’articles évaluant l ’intérêt de nouveaux tests à visée diagnostique Alain Venot UFR SMBH Campus virtuel SMBH
1 M2 Biomatériaux- Cours n°4 1 - Rappels du cours n°1 et 2 et Introduction au principe des test statistiques.
© 2012 Ipsos. All rights reserved. Contains Ipsos' Confidential and Proprietary information and may not be disclosed or reproduced without the prior written.
Rappels de LCA Thérapeutique Raphaël Favory. Biais de sélection Je ne randomise pas (je choisi à qui je vais donner le traitement test): Je vais avoir.
Importance du prix dans les choix thérapeutiques des ménages vulnérables de Yaoundé (Cameroun) Elvire MENDO, CLERSE-CNRS Université Lille 1 XXIX èmes Journées.
Pourquoi Les essais d’écriture : pourquoi ? Les essais d'écriture sont un atout pour la réussite scolaire de tous les élèves.
Les séquences mathématiques en 4 e et 5 e secondaire Selon la note obtenue dans le cours de mathématique de 3 secondaire, l’élève aura accès à trois cours.
1 Les groupements d’échangeurs thermiques, illustration de systèmes énergétiques, introduction aux systèmes complexes. Comprendre.
Chapitre 2 Variables aléatoires 1. Variables aléatoires : définition Résultat d’une expérience dont l’issue est multiple (VARIABLE) et imprévisible (ALÉATOIRE)
Chapitre 6 Les tests d ’ hypoth è se 2 – Les tests du  2 (chi 2)
Page 1 Étude prospective pour la définition d’une nouvelle agglomération Réunion du 2 avril 2011 ETUDE POUR LA DEFINITION D’UNE NOUVELLE AGGLOMERATION.
19 avenue Trudaine PARIS Tél. : +33 (0) Fax : +33 (0) site : Principaux résultats.
1 M1 MQSE Cours n°2 1 - Rappels du cours n°1 2 - La statistique: un outil pour décrire.
RadioProtection Cirkus Le portail de la RP pratique et opérationnelle Statistique et corrections des mesures Marc AMMERICH.
Chapitre 5 Interprétation des données d’enquête 1.
Nouveaux programmes de mathématiques cycles 3 et 4
Évaluation – Panorama 16 À l’étude…. Unité 16.1 Tu dois être capable de déterminer le caractère étudié d’une recherche de données :  qualitatif  quantitatif.
Caractérisation dimensionnelle de défauts par thermographie infrarouge stimulée. Contrôles et Mesures Optiques pour l’Industrie novembre
Chromosomes et gènes.
GESTION DE PORTEFEUILLE chapitre n° 6 Risque diversifié et risque diversifiable Le MEDAF.
La spécialité mathématique en TS. Les mathématiques sont une science qui se construit elle-même grâce à la démonstration. Axiomes et définitions Théorèmes.
Prochaine évolution de nos modèles bibliographiques : FRBR-LRM Pat Riva Présidente, FRBR Consolidation Editorial Group Séminaire.
Mesures de tendance centrale et mesures de dispersion.
Présenté par  Samira BELHORMA  Imane ZEHHAF. Introduction I. Définitions II. Quand et comment évaluer une compétence? III. Le contexte d’évaluation.
Les Statistiques.
Réalisé par : Sébastien Lachance MATHS 3 E SECONDAIRE LesSTATISTIQUES.
II. Les variables quantitatives
Médias éducatifs : modèles théoriques des médias et représentations d’étudiants et d’enseignants Un levier pour comprendre et faire évoluer les pratiques.
Régression linéaire (STT-2400) Section 3 Préliminaires, Partie II, La loi multinormale Version: 8 février 2007.
Chapitre 5 Interprétation des données d’enquête 1.
Reprise du cours ( ) Chapitre 5 : interprétation des données d’enquêtes hasard  prudence  incertitude et imprécision formules : marge et fourchette.
Eléments de correction. Exercice 1. Méthodes d’interpolation et cartes de températures (7 points) Présentation de la carte et des enjeux de la représentation.
FACULTE DE MEDECINE DE CONSTANTINE DEPARTEMENTs DE PHARMACIE ET DE MEDECINE DENTAIRE ENSEIGNEMENT GRADUE Année Universitaire EPIDEMIOLOGIE ANALYTIQUE.
Section 4 : Analyse descriptive. En 1901, Karl Pearson publie son papier sur l’Analyse en Composante Principale dans : “On lines and planes of closest.
Faculté de Médecine de Marseille, Université de la Méditerranée Laboratoire d’Enseignement et de Recherche sur le Traitement.
Chapitre 4: Variation dans le temps  Les données : audience totale en milliers (tableau 4.1, p. 47, extrait) o Origine : enquête sur les habitudes d’écoute.
Pourquoi étudier la statistique ?
POL1803: Analyse des techniques quantitatives
STAT D103 Esteban Callejas Perez H.4.145
Transcription de la présentation:

1 M1 MQSE 1 - L’outil statistique pour tirer des conclusions dans un monde de variabilité 2 - Utiliser la statistique: se confronter au hasard 3 - La statistique: un outil pour décrire et estimer 4 - La statistique: un outil pour tirer des conclusions 5 - Utiliser les tests statistiques et en comprendre leur conclusion

2 COURS N°1 L’outil statistique pour tirer des conclusions dans un monde de variabilité

3 Enquête en population Enquête exhaustive - causes de décès - registre Population de 25 individus 4 individus malades Prévalence dans la population = 4/ 25 Quelle est la prévalence de malades dans la population ?

4 Enquête sur un échantillon de la population Echantillons de 10 individus 1 individu malade Prévalence dans l’échantillon = 1/10 Prévalence dans la population=1/10 ? Enquête en population Quelle est la prévalence de malades dans la population ?

5 Prévalence dans la population Prévalence = 1/10 Prévalence = 3/10 ? Quelle est la prévalence de malades dans la population ?

6 Comment définir la prévalence dans la population? Echantillons de 10 individus 1 individu malade Prévalence dans l’échantillon = 1/10 Prévalence dans la population = Intervalle de valeurs très probables Estimation statistique Hasard

7 Notion de variabilité : inter-individuelle intra-individuelle inter-observateurs instrument de mesure Situation d ’estimation :ce que l ’on observe dans un petit groupe d ’individus est-il le reflet de la réalité? Les méthodes statistiques sont des outils qui permettent de tirer des conclusions objectives sur des énoncés scientifiques, face à l ’incertitude à toute étude empirique. La statistique est une méthode mathématique pour mesurer l ’incertitude scientifique et pour enlever ses effets. Pourquoi utiliser la méthode statistique?

8 Population statistique Ensemble sur lequel on veut obtenir des informations. En général sa taille est très grande et il n’est pas possible d’interroger tous ses individus Exemples : ensemble de personnes interrogeables pour une enquête, ensemble des électeurs ensemble de la patientèle d’un service de médecine

9 Echantillon Sous ensemble de la population ayant une taille assez petite pour chaque individu le composant puisse être interrogé Exemples : Les personnes interrogées pour une enquête, Certains électeurs Certains patients d’un service de médecine

10 Individu (unité statistique) Éléments de la population statistiques étudiée. Pour chaque individu, on dispose d’une ou plusieurs observations. Exemples : Chacune des personnes interrogées pour une enquête, Chaque électeurs Chaque patient d’un service de médecine

11 Dès lors que l’on s’intéresse à un sous ensemble de la population étudiée (échantillons) Statistique inférentielle - déduction: partir de la population pour connaître l’échantillon - induction: partir de l’échantillon pour connaître la population Lorsqu’on s’intéresse à la totalité de la population, il n’y a pas lieu d’utiliser les méthodes de statistique inférentielle, on peut cependant utiliser les méthodes de statistique descriptive Quand utiliser les méthodes statistiques

12 Tous les étudiants de Villetaneuse ont été mesurés. La taille moyenne des filles est de 1,6 m et celle des garçons de 1,7 m. Peut-on dire qu’à la faculté de Villetaneuse, les garçons ont une taille moyenne supérieure à celle des filles? Quelle est la population? Quel est l’échantillon? Utilise-t-on la méthode statistique? Quand utiliser les méthodes statistiques

13 Tous les étudiants de Villetaneuse ont été mesurés. La taille moyenne des filles est de 1,6 m et celle des garçons de 1,7 m. Peut-on dire qu’à la faculté de Villetaneuse, les garçons ont une taille moyenne supérieure à celle des filles? Quelle est la population étudiée? Les étudiants de la faculté de Villetaneuse Quel est l’échantillon? Il n’y a pas d’échantillon, toute la population est étudiée Utilise-t-on la méthode statistique? Non, on peut conclure sans cet outil: les étudiants de Villetaneuse sont plus grands que les étudiantes de Villetaneuse Quand utiliser les méthodes statistiques

14 Tous les étudiants de Villetaneuse ont été mesurés. La taille moyenne des filles est de 1,6 m et celle des garçons de 1,7 m. Peut-on dire que les étudiants en France sont plus grands que les étudiantes en France? Quelle est la population? Quel est l’échantillon? Utilise-t-on la méthode statistique? Quand utiliser les méthodes statistiques

15 Tous les étudiants de Villetaneuse ont été mesurés. La taille moyenne des filles est de 1,6 m et celle des garçons de 1,7 m. Peut-on dire que les étudiants en France sont plus grands que les étudiantes en France? Quelle est la population? Les étudiants en France Quel est l’échantillon? Les étudiants de Villetaneuse Utilise-t-on la méthode statistique? Oui car à partir d’un échantillon on veut généraliser à une population plus grande. Pour cela, il faut s’assurer que l’échantillon étudié est représentatif de la population qu’il est sensé représenter Quand utiliser les méthodes statistiques

16 Variable Ce qui est observé ou mesuré sur les individus d’une population. Caractéristique ou facteur susceptible de prendre une valeur différente selon les individus Exemples : La profession des personnes interrogées pour une enquête, L’opinion des électeurs Le taux de cholestérol des patients d’un service de médecine

17 Variable quantitative s'expriment par des nombres réels sur lesquels les opérations arithmétiques courantes (somme, moyenne...) ont un sens (age, taille). Une variable quantitative est discrète si elle ne peut prendre que des valeurs isolées, généralement entières (nombre d’enfant dans la fratrie). Une variable quantitative est continue si ses valeurs peuvent être n'importe lesquelles d'un intervalle réel (taille).

18 Variable qualitative S’exprime par une expression littérale (des mots) ou un nombre sur lesquels les opérations arithmétiques courantes n'ont aucun sens (un numéro de département). Une variable qualitative est ordinale si l'ensemble des catégories est munie d'un ordre total (Intensité (faible, moyenne, élevée)) Une variable qualitatives est nominale s’il n'y a aucune raison d'écrire les modalités possibles dans un ordre plutôt que dans un autre (couleur des yeux (bleu, vert, marron)) Une variable est dichotomique lorsqu’elle n’a que 2 modalités (Sexe (M ou F, 1 ou 0), qualité (bonne ou mauvaise))

19 Nature des variables statistiques

20 Sujet Taille (cm) Age (années)Sexe Classe de taille FNormal FPetit HGrand HNormal FPetit HNormal FNormal Série statistique brute Nombre d’individus? Nombre de variables? Type de variables?

21 Sujet Taille (cm) Age (années)Sexe Classe de taille FNormal FPetit HGrand HNormal FPetit HNormal FNormal Série statistique brute Nombre d’individus? 630 Nombre de variables?4

22 Un technicien doit vérifier le bon fonctionnement d'une chaîne d'embouteillage d'une cave coopérative. On considère que le remplissage est correct si le contenu des bouteilles se situe entre 74 cl et 76 cl. Il note exactement le contenu de 100 bouteilles testées (en cl) : Quelle est la variable mesurée? Quels sont les individus? Nombre d’individus dans la population étudiée?

23 Un technicien doit vérifier le bon fonctionnement d'une chaîne d'embouteillage d'une cave coopérative. On considère que le remplissage est correct si le contenu des bouteilles se situe entre 74 cl et 76 cl. Il note exactement le contenu de 100 bouteilles testées (en cl) : Quelle est la variable mesurée? Contenu de la bouteille Quels sont les individus? Les bouteilles Nombre d’individus dans la population étudiée? 100

24

25 Variables n° 1 qualitative n° 2 Qualitative à 2 modalités n° 3 Quantitative discrète n° 4 qualitative n° 5 Quantitative discrète n° 6 Quantitative continue n° 7 Quantitative continue n° 8 Quantitative continue

26

27 Variable s n° 1 dichotomique n° 2 ordinale n° 3 nominale n° 4 dichotomique n° 5 nominale

28 Quelle que soit la nature de la variable, il faut toujours s'assurer qu'elle est définie pour chaque individu sans ambiguïté. Pour chaque individu et chaque variable il doit y avoir une et une seule valeur (ou modalité).

29 Distribution d’une variable aléatoire La variable est aléatoire lorsqu’elle peut prendre une valeur qui change d’un individu à l’autre. Si on prend un individu au hasard, la valeur de la variable mesurée n’est pas connue à l’avance. On connaît la distribution d’une variable aléatoire lorsqu’on connaît les probabilités associées à chacune de ses valeurs possibles

30 Distribution d’une variable aléatoire Exemple du jet de un dé la probabilité de faire 1 : 1/6 la probabilité de faire 2 : 1/6 la probabilité de faire 3 : 1/6 la probabilité de faire 4 : 1/6 la probabilité de faire 5 : 1/6 la probabilité de faire 6 : 1/6

31 Distribution d’une variable aléatoire Exemple du jet de 6 pièces de monnaies, distribution de la variable nombre de « face » la probabilité d’avoir 0 « face » la probabilité d’avoir 1 « face » la probabilité de faire 2 « face » la probabilité de faire 3 « face » la probabilité de faire 4 « face » la probabilité de faire 5 « face » la probabilité de faire 6 « face »

32 Distribution d’une variable aléatoire Exemple du jet de 20 pièces de monnaies, distribution de la variable nombre de « face »

33 Distribution d’une variable aléatoire Exemple du jet de un nombre infini de pièces de monnaies, distribution de la variable nombre de « face »

34 Loi d’une variable aléatoire La loi d’une variable aléatoire est la liste des probabilités d’apparition de chacune des issues de l’expérience. La loi normale: une loi de distribution très utilisée en statistique Quand une variable est la résultante d’un grand nombre de variables indépendantes (génétique, nutrition, environnement…), elle suit une loi normale

35 Loi normale C ’est un modèle de distribution théorique. Elle s’applique aux variables quantitatives continues Elle est centrée autour de la moyenne (médiane=moyenne) La probabilité d ’observer une valeur comprise entre -1,96 écart type et +1,96 écart type autour de la moyenne est de 95% La probabilité d ’observer une valeur comprise entre -1 écart type et +1 écart type autour de la moyenne est de 68%

36 Loi normale: répartition des tailles

37 Loi normale quelconque, loi normale centrée réduite On pourrait construire autant de loi normale qu’il existe de variables aléatoires, elles auraient la même allure mais seraient centrées sur des valeurs variant d’une variable à l’autre et auraient des points d’inflexion variant d’une variable à l’autre. Aussi pour avoir une loi normale de référence, il est possible d’opérer des transformations sur les variables pour obtenir des variables centrées réduites qui suivent une loi normale centrée réduite. La loi normale centrée réduite, elle présente la caractéristique d’avoir pour moyenne  =0 et pour écart type  =1.

38 Loi normale centrée réduite

39 Utilisation de la loi centrée réduite Pr(Z>1,64)

40 Utilisation de la loi normale Pr(Z<1,64)

41 Utilisation de la loi normale Pr(1<Z<2)