Basic crystallography Paolo Fornasini Department of Physics University of Trento, Italy.

Slides:



Advertisements
Présentations similaires
What is the nanotechnology History applications of nanotechnology Conclusion.
Advertisements

Effets sur la santé des champs électromagnétiques basse fréquence
2007 General Meeting Assemblée générale 2007 Montréal, Québec 2007 General Meeting Assemblée générale 2007 Montréal, Québec Canadian Institute of Actuaries.
CHAPTER 4 CONDUCTION IN SEMICONDUCTORS Prof. Dr. Beşire GÖNÜL.
Spectroscopy  Probe structure and dynamics of matter through its interaction with waves (usually electromagnetic) incoming radiation matteroutcoming radiation.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
Impression : La taille de cette affiche est de 121,9 cm (largeur) sur 91,5 cm (hauteur). Elle doit être imprimée sur une imprimante grand format. Personnalisation.
PERFORMANCE One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement.
LE VERBE AVOIR FSL - RÉVISION. AVOIR – TO HAVE “Avoir” is the infinitive form of the verb “To Have” In order to use it with a subject pronoun (pronom.
Water effects on The human body
 Components have ratings  Ratings can be Voltage, Current or Power (Volts, Amps or Watts  If a Current of Power rating is exceeded the component overheats.
The cancer is a deadly disease, it starts when cells in the body begin to grow out of control and multiply too much. Cancer can start almost anywhere in.
M. Ryan Academic Decathlon Architecture. The art and science of designing and constructing buildings Architecture.
DIFFUSION IN SOLIDS  FICK’S LAWS  KIRKENDALL EFFECT  ATOMIC MECHANISMS Diffusion in Solids P.G. Shewmon McGraw-Hill, New York (1963)
Introduction to geophysics Topics 1.Seismology 2.Gravity 3.Geomagnetism (Introduce the web-page, grading policies, etc.)
CNC Turning Module 1: Introduction to CNC Turning.
UNEP / ICCA Workshop TEMA June DG and GHS Classification System.
Photons Episode 3.
Formules en 2 étapes 1MPES4
Composition et structure des solides
1 S Transmission Methods in Telecommunication Systems (4 cr) Transmission Channels.
Réunion service Instrumentation Activités CMS-Traces
Indirect acoustical characterization of sound absorbing materials
Monte Carlo Algorithm for simulation of phonon transport in silicium nanowires Scattering mechanism 18 June 2013 Jérôme LARROQUE.
ABAQUS I Summary Program Capability Components of an ABAQUS Model Elements, Materials and Procedures Modules (analysis, pre and post processing) Input.
Quantum Computer A New Era of Future Computing Ahmed WAFDI ??????
Theory of Relativity Title of report Encercle by Dr. M.Mifdal Realized by ZRAR Mohamed.
the Periodic Table the Periodic Table 2017/2018 Made by : NEDJAR NASSIMA Made by : NEDJAR NASSIMA MS:HAMZA 1.
Structure de la membrane
Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics Statistics & Econometrics.
COMMENT PRÉPARER UN GÂTEAU MICHELIN A*
Conjugating regular –er verbs en français
Les Fruits :.
Arch. Hydrobiol. I 100 I I Stuttgart, Mai 1984
© 2004 Prentice-Hall, Inc.Chap 4-1 Basic Business Statistics (9 th Edition) Chapter 4 Basic Probability.
Copyright 2007 – Biz/ed Globalisation.
MODELING OF INDUCTION HARDENING PROCESS PART 1: INDUCTION HEATING Dr. Jiankun Yuan Prof. Yiming (Kevin) Rong Acknowledgement:
Phase-Locked Loop Design S emiconducto r S imulation L aboratory Phase-locked loops: Building blocks in receivers and other communication electronics Main.
P&ID SYMBOLS. P&IDs Piping and Instrumentation Diagrams or simply P&IDs are the “schematics” used in the field of instrumentation and control (Automation)
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 1-1 Chapter 1 Introduction and Data Collection Basic Business Statistics 10 th Edition.
Metallic Glasses in Cell Phones Angelika Franz. Outline what is a metallic glass structure properties processing cell phone cases cell phone hinges.
G. Peter Zhang Neurocomputing 50 (2003) 159–175 link Time series forecasting using a hybrid ARIMA and neural network model Presented by Trent Goughnour.
Lect12EEE 2021 Differential Equation Solutions of Transient Circuits Dr. Holbert March 3, 2008.
La grille EGEE dans le monde et à Orsay
La famille ER conjugaison
MATLAB Basics With a brief review of linear algebra by Lanyi Xu modified by D.G.E. Robertson.
Cryopreservation. Benefits Of Freezing Cells Benefits Of Freezing A Validated Stock Of Cells –Genotypic drift –Senescence leading to extinction of cell.
University graduates and unemployement job in Tunisia Faculté des sciences a Sfax Département Informatique et Télécommunication Élaboré par: Année Universitaire.
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ’ ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE Universit é Mohamed Kider Biskra.
HOW DATA SCIENCE IS HELPING IN ARTIFICIAL INTELLIGENCE ? BOUAZIZ – AZZIZIGROUP A 01/10/20181.
Laser physics M. A. Bouchene Laboratoire « Collisions, Agrégats, Réactivité », Université Paul Sabatier, Toulouse, France.
Connaissez-vous la France ?
Roots of a Polynomial: Root of a polynomial is the value of the independent variable at which the polynomial intersects the horizontal axis (the function.
Radiation Protection in Radiotherapy Part 2 Radiation Physics IAEA Training Material on Radiation Protection in Radiotherapy.
Connaissez-vous la France ?
1-1 Introduction to ArcGIS Introductions Who are you? Any GIS background? What do you want to get out of the class?
MAGNETISM l Historical background : lodestone (magnetite) known for 1000s of years; Thales of Miletus studied lodestones (590 BC); magnetic compass invented.
1 Sétif 16/02/2019 Disorder effect on optical properties of chiral structures, single crystal X-ray diffraction and DFT calculations 1 Laboratoire d'Electrochimie.
Manometer lower pressure higher pressure P1P1 PaPa height 750 mm Hg 130 mm higher pressure 880 mm Hg P a = h = +- lower pressure 620 mm Hg.
Analyses thermiques Le comportement thermique a été tudié par ATG et ATD afin de prévoir la température et les conditions de calcination nécessaire à l'obtention.
VERB CONJUGATIONS PRESENT TENSE.
University : Ammar Telidji Laghouat Faculty : Technology Department : Electronics 3rd year Telecommunications Professor : S.Benghouini Student: Tadj Souad.
L’orchestre des animaux
FROM THE NEAR FIELD OF NANO- ANTENNAS TO THE FAR FIELD OF METASURFACES Thesis Supervisor: Dr. Yannick De Wilde Co-supervisor: Dr. Patrick Bouchon.
Properties of ElectroMagnetic Radiation (Light) Introduction A.)Spectroscopy: A method of analysis based on the interaction, absorption or production of.
Soutenance de thèse: Okba Taouali 1 02/08/2019 Fathia AZZOUZI, Adam BOURAS, Nizar JEBLI Conceptual specifications of a cooperative inter- machines dialogue.
Genetic Algorithm for Variable Selection Jennifer Pittman ISDS Duke University.
Radar basic Concepts Chapter 1. Overview Radar Concepts Basic form of Radar system Types of Radar Radar Medium Targets Types Radar Performed functions.
Transcription de la présentation:

Basic crystallography Paolo Fornasini Department of Physics University of Trento, Italy

Overview X-rays Crystals Crystal lattices Some relevant crystal structures Crystal planes Reciprocal lattice Crystalline and non-crystalline materials

 X-rays

Discovery of X-rays Würzburg (Germany) November 8,1895 Wilhelm Konrad Röntgen ( ) Paolo Fornasini Univ. Trento

Electromagnetic waves Speed (in vacuum): Paolo Fornasini Univ. Trento Photon energy Frequency Wavelength Electric field Magnetic field 1 Å = m 1 nm = m

Wave-vector Paolo Fornasini Univ. Trento Plane wave

Paolo Fornasini Univ. Trento Complex notation

Electromagnetic spectrum Photon energy Frequency X-rays Wavelength Paolo Fornasini Univ. Trento I R Micro waves E  eV)  m)  Hz) X UV  ELF Radio waves

Interaction of x-rays with matter Paolo Fornasini Univ. Trento Incoming beam (monochromatic) Elastic scattering Inelastic scattering Photo-electrons Auger electrons Fluorescence Photo-electric absorption Scattering Beam attenuation

X-RAYS and X-ray techniques Paolo Fornasini Univ. Trento X-rays Å 1  m (m) U.V.I.R. ScatteringSpectroscopy Imaging

 Crystals

Crystals Quartz crystal (SiO 2 ) Macroscopic regularities (e.g. constancy of angles) Classification of crystals Regular packing of microscopic structural units R.J. Haüy ( ) Paolo Fornasini Univ. Trento

Atoms and crystals Structural units = atoms Example: NaCl Cubic structure 1 cm 3 m = g N = 44.6 x atoms HYPOTHESIS: CONCLUSION: Inter-atomic distances Atomic dimensions Atomic masses:Na x g Cl x g 0.28 nm = 2.8 Å  X-ray wavelengths Paolo Fornasini Univ. Trento

X-ray diffraction from crystals Munich, 1912: Max von Laue W. Friedrich & P.Knipping Paolo Fornasini Univ. Trento

Crystallography William Henry Bragg ( ) William Lawrence Bragg ( ) Cambridge, 1912/13 Bragg spectrometer Paolo Fornasini Univ. Trento

Crystal structure Paolo Fornasini Univ. Trento 1-D 3-D 2-D Atom Molecule Protein Bravais lattice + Basis 1-D 2-D 3-D

Bravais lattice + basis Paolo Fornasini Univ. Trento 1-D 2-D 3-D

 Crystal lattices

Translation vectors (2D) Paolo Fornasini Univ. Trento 2-D Arbitrary origin For every lattice point integersprimitive vectors

Primitive vectors (2D) Paolo Fornasini Univ. Trento 2-D Different choices of primitive vectors

Non-primitive vectors (2D) Paolo Fornasini Univ. Trento Not all pairs are primitive 2-D

Primitive vectors (3D) Paolo Fornasini Univ. Trento Different choices of primitive vectors 3-D

Primitive unit cells (2D) Paolo Fornasini Univ. Trento 2-D Different choices of primitive unit cells Primitive cell = 1 lattice point

Conventional unit cells (2D) Paolo Fornasini Univ. Trento 2-D More than 1 lattice point per unit cell

Non-Bravais lattices Paolo Fornasini Univ. Trento 2-D Atoms Un-equivalent sites

Bravais lattices Bravais lattice Basis Paolo Fornasini Univ. Trento

Classification of cells 2-D 3-D latin greek

Surface Bravais lattice Non-primitive unit cell Paolo Fornasini Univ. Trento 2-D

3-D Bravais lattices 4 unit cells P = primitive I = body centered F = face centered C = side centered 7 crystal systems 14 Bravais lattices += Paolo Fornasini Univ. Trento 3-D

Coordinates Paolo Fornasini Univ. Trento Inside cell: fractional coordinates Lattice points: integer coordinates

 Some relevant crystal structures

Simple cubic lattice Paolo Fornasini Univ. Trento Primitive unit cell (1 lattice point per cell) Coordination number = 6 lattice parameter Bravais lattice 84-Poa=3.35 Å

Body centered cubic lattice (bcc) Paolo Fornasini Univ. Trento conventional unit cell (2 lattice points per cell) Bravais lattice lattice parameter Coordination number = 8 24-Cra=2.88 Å 26-Fea=2.87 Å 42-Moa=3.15 Å

Face centered cubic lattice (fcc) Paolo Fornasini Univ. Trento conventional unit cell (4 lattice points per cell) Bravais lattice lattice parameter Coordination number = Cua=3.61 Å 47-Aga=4.09 Å 79-Aua=4.08 Å

Diamond structure conventional unit cell (8 atoms per cell) Paolo Fornasini Univ. Trento Coordination number = 4 Non-Bravais lattice fcc Bravais lattice2-atom basis + 6-Ca=3.57 Å 14-Sia=5.43 Å 32-Gea=5.66 Å

Zincblende (sphalerite) structure Paolo Fornasini Univ. Trento conventional unit cell (8 atoms per cell) Cordination number = 4 Non-Bravais lattice fcc Bravais lattice2-atom basis + ZnSa=5.41 Å GaAsa=5.65 Å SiCa=4.35 Å

Rock-salt (NaCl) structure Cordination number = 6 Paolo Fornasini Univ. Trento conventional unit cell (8 atoms per cell) NaCla=5.64 Å KBra=6.60 Å CaOa=4.81 Å Non-Bravais lattice fcc Bravais lattice2-atom basis +

Simple hexagonal structure 2 lattice parameters Paolo Fornasini Univ. Trento Primitive cellHexagonal symmetry Top view Primitive unit cell (1 lattice point per cell)

Hexagonal close packed structure Cordination number = 12 4-Bea=2.29 Å 12-Mga=3.21 Å 48-Cda=2.98 Å Paolo Fornasini Univ. Trento Conventional unit cell (2 atoms per cell) Non-Bravais lattice primitive cell + 2-atom basis

Coordination number Paolo Fornasini Univ. Trento N=4 diamond N=6 cubic N=8 bcc N=12 fcc hcp Close packing

Close-packing of spheres 1st layer A AAA A AAAA A AAA A AAAA AAAAA 2nd layer BB B B BB B BBBB B B B Paolo Fornasini Univ. Trento 3rd layer A AAA A AAAA A AAA A AAAA AAAAA C CC C C C C C A B AA B C

hcp versus fcc A AAA A AAAA A AAA A AAAA AAAAA C CC C C C C C Paolo Fornasini Univ. Trento A B A A B C fcchcp

 Crystal planes

Crystal planes Paolo Fornasini Univ. Trento 2-D

Miller indices, 2-D (a) (hk) = (21)(hk) = (11) 2-D Paolo Fornasini Univ. Trento

Miller indices, 2-D (b) Paolo Fornasini Univ. Trento

Miller indices, 3-D Paolo Fornasini Univ. Trento 3-D

Miller indices, cubic lattices Paolo Fornasini Univ. Trento bcc fcc sc

Interplanar distance Paolo Fornasini Univ. Trento Cubic lattices Copper, fcc, a=3.61 Å

Planes and directions Family of planes Perpendicular direction

Equivalent planes and directions Equivalent directions Equivalent planes

 Reciprocal lattice

X-ray diffraction pattern Paolo Fornasini Univ. Trento Direct space 3-dimensional lattice Reciprocal space 2-dimensional projection

Basic idea Paolo Fornasini Univ. Trento A) Family of planes  wave-vector B) Wave-vectors  set of points C) Set of points  lattice

Reciprocal quantities Paolo Fornasini Univ. Trento frequencytime positionwave-vector Periodic behaviour

Harmonics Paolo Fornasini Univ. Trento Periodic behaviour fundamental 2nd harmonic 3rd harmonic time frequency

1-D Direct space Reciprocal space Paolo Fornasini Univ. Trento

2-D, rectangular lattice (a) Paolo Fornasini Univ. Trento Direct space Reciprocal space

2-D, rectangular lattice (b) Reciprocal space Direct space Paolo Fornasini Univ. Trento

2-D, rectangular lattice (c) Reciprocal space Direct space Paolo Fornasini Univ. Trento

2-D, rectangular lattice (d) Reciprocal space Direct space Paolo Fornasini Univ. Trento

2-D, oblique lattice (a) Paolo Fornasini Univ. Trento Reciprocal space Direct space

2-D, oblique lattice (b) Paolo Fornasini Univ. Trento Reciprocal space Direct space

Cubic lattices (a) Reciprocal space Direct space Paolo Fornasini Univ. Trento

Cubic lattices (b) Reciprocal space Direct space Paolo Fornasini Univ. Trento

Cubic lattices (c) Reciprocal space Direct space Paolo Fornasini Univ. Trento

Primitive vectors: general rule Direct space Reciprocal space Paolo Fornasini Univ. Trento

Reciprocal lattice and lattice planes For any family of lattice planes separated by a distance d there are reciprocal lattice vectors perpendicular to the planes, the shortest of which have a length 2  /d. For any reciprocal lattice vector R*, there is a family of lattice planes normal to R* and separated by a distance d, where 2  /d is the length of the shortest reciprocal lattice vector parallel to R*. Paolo Fornasini Univ. Trento

 Microscopic structure of materials

Macro and micro-crystals Monocrystalline silicon,  13 cm Cr, electron microscopy Grain structure Paolo Fornasini Univ. Trento

Effects of temperature Paolo Fornasini Univ. Trento Temperature Spread of atomic positionsThermal motion

Crystalline and non-crystalline materials Paolo Fornasini Univ. Trento Crystalline solids Non-crystalline systems Long-range orderNo long-range order

Cooling rate High T: liquid Low T: solid Slow coolingFast cooling No thermodynamic equilibrium Thermodynamic equilibrium Paolo Fornasini Univ. Trento

Radial Distribution Function Paolo Fornasini Univ. Trento r 0 1 g(r) PDF = Pair Distribution Function average density Short-range order

 Summary Plane waves and wavevector Crystal structure = Bravais lattice + basis Bravais lattices: primitive vectors, unit cells (primitive and conventional), classifications Crystal structures (sc, bcc, fcc, hcp...) Crystal planes and Miller indices Reciprocal lattice Crystalline and non-crystalline materials

Dolomite mountains in winter