Produits dérivés.

Slides:



Advertisements
Présentations similaires
Mais vous comprenez qu’il s’agit d’une « tromperie ».
Advertisements

FINANCEMENT DES ENTREPRISES
1 Plus loin dans lutilisation de Windows Vista ©Yves Roger Cornil - 2 août
La gestion du risque de change.
Gestion de portefeuille 2
ECONOMIE INTERNATIONALE Cécile COUHARDE
Gestion de portefeuille Support n° 5 Catherine Bruneau
Journée CdG I.T.B..
Les numéros 70 –
LES TRIANGLES 1. Définitions 2. Constructions 3. Propriétés.
Introduction aux options
financiers (comptabilisation
LES INSTRUMENTS FINANCIERS
LES PRODUITS DÉRIVÉS première partie
Gestion du risque de prix du coton
Instruments Financiers Dérivés Une Introduction
12 Les produits hors bilan
07 – Stratégie d’utilisation des Options
LE CHOIX EN CONTEXTE D’INCERTITUDE (suite...)
Économie pour les ingénieurs
Options et Produits Structurés
Les modèles macro de la synthèse - diapo 3
Décisions stratégiques : le coût du capital
Gestion efficiente de portefeuille
STRATEGIES FINANCIERES DE COUVERTURE (“HEDGING”)
Cours Corporate finance Eléments de théorie du portefeuille Le Medaf
Les nombres.
LE FIXED INCOME ARBITRAGE
Les chiffres & les nombres
Les Produits Financiers.
Équipe 1 Benoit Fesquet Jean-François Moisan Philippe Shehyn-Plante.
Cours 12: TP Solutionnaire
INFRA 2007 Montréal 7 novembre 2007 Le dilemme risque-opportunité dans lestimation des coûts des projets Said Boukendour Université du Québec en Outaouais.
LES TITRES À REVENU FIXE: LES OBLIGATIONS:
LES TITRES À REVENU FIXE: LES OBLIGATIONS:
INTRODUCTION AU PLACEMENT
LES PRODUITS DÉRIVÉS troisième partie: Black - Scholes modèle binomial
L ’ÉVALUATION DES ACTIONS ORDINAIRES:
LES PRODUITS DÉRIVÉS deuxième partie: les stratégies
INVEST'ESI. Warrants Mode d’emploi.
MAGIE Réalisé par Mons. RITTER J-P Le 24 octobre 2004.
MATHÉMATIQUES FINANCIÈRES I
Aire d’une figure par encadrement
MAGIE Réalisé par Mons. RITTER J-P Le 24 octobre 2004.
Chapitre 4 Les taux d’intérêt.
Produits financiers dérivés Septembre Page 2 Plan Généralités sur les produits dérivés Les contrats Forward Les contrats Futures Les swaps Les options.
Gestion du portefeuille – Sélection du portefeuille
1 Cours schématique: Semaine #6 Copyright - École des HEC -
08– Arbres Binomiaux Chapitre 12 Hull, 8 éd..
ADDENDA CAPITAL INC. Présentation pour le Séminaire FTQ sur les régimes complémentaires de retraite Le 17 mars 2006.
Gestion du portefeuille 07A – Modèle à facteurs
05 – Les Swaps ou convention d’échange
OPTIONS Chapitre 7.
Titre Olivier Blais-Ampleman Jean-François Dion Mathieu Faucher Favreau Groupe ADF Consultants en investissement.
03 – Stratégie de couverture avec les contrats à termes
Marché des capitaux.
Gestion des risques financiers
03 Volatilité dans le marché obligataire
ACT Cours 23 MATHÉMATIQUES FINANCIÈRES I Vingt-troisième cours.
CHAPITRE 5. La théorie de l’assurance
La Bourse... Les Bases Au menu… Les produits de base Les produits dérivés Risques et rendements Conclusion pratique.
Produits Dérivés - JDC OPTIONS Produits Dérivés - JDC.
MATHÉMATIQUES FINANCIÈRES I
27/11/07 MATHÉMATIQUES FINANCIÈRES I Vingt-troisième cours.
La dynamique de la mondialisation financière Constitution et fonctionnement du marché mondial des capitaux (partie 4)
Chapitre 3 Les titres hybrides
Contrat «forward» Définition générale Un contrat personnalisé entre deux parties qui s’engagent à acheter ou vendre un actif à un prix déterminé à une.
L AMIA E L A LAOUI ( LAMIA HOTMAIL. FR ) C HIARA S COPELLITI ( CHIARA. HOTMAIL. IT ) T HIZIRI S ELMOUN (S ELMOUN _ HOTMAIL.
Portefeuille obligataire. 3 sources de rendements : 1.Revenu lié aux coupons 2.Gain (perte) en capital 3.Revenu lié au réinvestissement des coupons 4.
Modèle Black-Scholes Merton
Transcription de la présentation:

Produits dérivés

Introduction Que fait-on avec des produits dérivés? On gère l’incertitude liée au futur: Avec des contrats à terme, on fixe le futur maintenant. Avec des options, on achète un contrat d’assurance Mais également on spécule et accessoirement on fait de l’argent Ils permettent de fixer un prix, de segmenter les risques et de les redistribuer. Ils permettent la couverture des risques. Ils peuvent agir comme précurseur des tendances futures des marchés. Ils permettent de supprimer les opportunités d’arbitrage Ils permettent de changer la nature du passif et la structure des actifs sans engendrer de coûts énormes. Ils constituent un élément de levier très important. Ils permettent aux opérateurs une flexibilité dans la gestion.

Forwards & Futures Quelle est la différence entre futures et forwards? Un forward est un contrat personnalisé entre deux parties : Over the counter Habituellement, l’intention est de transiger à la date d’échéance, et il n’est pas possible facilement d’annuler le contrat Un futures est un contrat standardisé et échangé sur une bourse, alors l’intention n’est pas nécessairement de garder la position jusqu’à échéance : Exchanged Trade contract Il est relativement simple d’annuler le contrat avant l’échéance, on prend alors une position inverse Futures: Standardisation (échéance, quantité, etc.): Accroît la "liquidité" des contrats (concentre les échanges dans quelques contrats); Facilite la comparaison des prix; Le contrat spécifie les points suivants: sous-jacent à livrer, lieu de livraison et date de livraison; Élimine le counterparty risk car la bourse garantit le contrat. Centralisation des marchés Réglementation: Marking to Market Protège l’intérêt du public; Prévient les pratiques “douteuses” À l'échéance du contrat: Prix Futures = Prix spot

Forwards & Futures Terminologie Open interest: Settlement price: Nombre total de contrats ouverts; Égal au nombre de positions courtes (ou longues -- mais ne comptez pas deux fois!). Settlement price: Prix Futures juste avant la fermeture du marché; Utilisé pour le “marking to market”. Volume: Nombre de transactions dans une journée.

Résultat: aucun risque Forwards & Futures Profit ST F0 Position de base Position contrat à terme Vendeur Acheteur Position longue dans sous-jacent Position courte dans contrat à terme Résultat: aucun risque Position courte dans sous-jacent Position longue dans contrat à terme

Forwards & Futures F0 = (S0 - I0+U0) e (r – q - rf + u – y )T Notation : T: Date d’échéance du contrat S0 : Prix du sous-jacent aujourd’hui F0 :Prix Forward ou Futures r : Taux d’intérêt sans risque annuel (ou sur la durée du contrat) q : Revenu ou dividende en % I0 : Valeur présente des dividendes en $ rf : Taux sans risque étranger (f pour foreign) u : Coût entreposage en % y : Coût opportunité de détenir la matière pour consommation F0 = S0 erT S0 = F0 e-rT F0 = (S0 - I0+U0) e (r – q - rf + u – y )T Les coûts entrent en positif Les bénéfices entrent en négatif

Forwards & Futures Stratégie Cash and Carry F0M > F0S, on achète F0S et on vend F0M Emprunt et achat du sous-jacent; On vend le contrat à terme (position courte); Livraison et remboursement de l’emprunt à l’échéance Aucun risque Le prix forward s’ajustera jusqu’à ce qu’il n’y ait aucun profit possible Stratégie Reverse Cash and Carry F0S > F0M, on achète F0M et on vend F0S Vente à découvert du sous-jacent et placement de l’argent Position longue dans le contrat à terme Achat du sous-jacent à l’échéance Toujours

Forwards & Futures Contrats Futures sur Indices Boursiers Canada : S&P TSX US : Dow Jones, Nasdaq, S&P 500 Europe : FTSE (Angleterre), CAC 40 (France), DAX (Allemagne) Asie : Shangaï composite, Hang seng (Chine), BSE (Inde), Nikkei (Japon), TSEC (Taiwan) Amérique du Sud : IBOVESPA (Brésil), MEXBOL (Mexique), MERVAL (Argentine) Attention : la composition et le mode de calcul de ces indices varient Valeur d’un contrat «f»: À ne pas confondre avec le prix Forward F0 La valeur du contrat sert à connaître le gain ou la perte possible à une date donnée durant la vie d’un contrat f = 0 à la signature du contrat f varie tous les jours tout au long de la vie d’un Forward Notation : f = valeur du Forward K = le prix du Forward lorsque le contrat a été créé Valeur d’une Position Longue: f = (F0 – K) e-rT

Forwards & Futures Arguments contre la couverture de risque: Les actionnaires sont en mesure de diversifier le risque eux-mêmes, probablement mieux que la compagnie Gérer les risques est une opération coûteuse qui n’ajoute pas de valeur. Si la compagnie est la seule à gérer le risque dans son secteur, cela constitue une augmentation de ses coûts face à ses compétiteurs. La gestion des risques est parfois (souvent) motivée par un lissage des résultats présentés aux états financiers. Il peut alors être difficile de justifier des résultats décevants. Implique une décision stratégique au plus haut niveau Arguments pour la couverture de risque: Les compagnies devraient se concentrer sur leur production et minimiser les risques associés au mouvement des variables financières (taux d’intérêt, taux de change, etc.). La réduction des risques liés aux flux monétaires futurs améliore la planification des activités (choix des investissements). La gestion des risques permet de minimiser la possibilité de se retrouver en détresse financière. Les gestionnaires ont un avantage comparatif par rapport aux actionnaires quant à la connaissance réelle des risques. Il existe des imperfections dans les marchés qui font que les gestionnaires sont mieux placés que les actionnaires pour gérer le risque de change.

Forwards & Futures Risque de base: La base est la différence entre le prix spot et le prix Futures: Baset = ( St – Ft ) À la fermeture du contrat, il y a une incertitude quant à la base. F S base T Prix

Forwards & Futures Il faut choisir le contrat dont la date de livraison est la plus proche de la date de la fin de la stratégie de couverture. La date de livraison doit cependant être plus éloignée que la date de fin de la stratégie de couverture. S’il n’y a pas de contrat Futures avec un actif sous-jacent identique au sous- jacent à couvrir Choisir un contrat dont les prix Futures sont les plus fortement corrélés avec le prix de l’actif à couvrir. (Cross Hedging)

Forwards & Futures Ratio de variance minimum Le ratio de variance minimum dépend de la relation entre le changement du prix spot DS et le changement du prix du futures DF C’est aussi le coefficient de la droite de régression entre DS et DF Couverture : h est la proportion du future (position courte) On forme un portefeuille V = S – hF On veut éliminer la variance DV = DS – hDF La variance est Pour trouver h mini, on dérive et on met égale à 0 La proportion optimale d’exposition qui doit être couverte est: S: prix spot F: prix Futures σΔS: écart-type de ΔS σΔF: écart-type de ΔF ρ: coefficient de corrélation entre ΔS et ΔF

Forwards & Futures Le nombre optimal de contrats à prendre NA : Valeur (ou nombre d’unités) de la position spot à couvrir QF : Valeur (ou nombre d’unités) de chaque contrat Futures N* : Nombre optimal de contrat Futures

Forwards & Futures Couverture d'un portefeuille avec Futures sur indice boursier: N* = b (S / F) b: Beta d'un portefeuille, représentant la sensibilité de la valeur du portefeuille aux variations du rendement du marché S: Valeur totale du portefeuille F: Valeur courante d’un contrat futures, i.e. prix Futures de l’indice × taille d’un contrat Lorsque l’on couvre le risque, cela est équivalent à changer le beta du portefeuille à zéro Pour changer le  à une valeur autre que 0, il faut procéder de la façon suivante: Si nouveau < actuel alors, on doit vendre le nombre de contrats: N* = (actuel - nouveau) ×(S / F) Si nouveau > actuel alors, on doit acheter le nombre de contrats: N* = (nouveau - actuel ) × (S / F)

Forwards & Futures Calcul des taux Forward entre T1 et T2 en taux continu La théorie des anticipations rationnelles postule que les taux d’intérêt spot anticipés futurs sont égaux aux taux Forward. La théorie de la prime de liquidité postule que le taux Forward est plus élevé que le taux spot espéré futur. La théorie des marchés segmentés postule que les taux d’intérêt sont déterminés de façon indépendante par l’offre et la demande pour des maturités différentes.

Forwards & Futures Un FRA (Forward Rate Agreement) est un contrat Forward dans lequel les deux parties s’engagent à appliquer un certain taux pour une période future donnée. Un FRA est un engagement équivalent à échanger un taux d’intérêt prédéterminé contre le taux du marché Cela implique un gain ou une perte… En pratique, le règlement du contrat se fait au net, en argent, au début de la période où le taux garanti s’applique Valeur du FRA à T1: VT1 = Q [e(rk–r12) (T2-T1) – 1]

Forwards & Futures Intérêts gagné entre deux dates : Convention : Nombre exact / 360 : Treasury bills Nombre exact / nombre exact : Treasury bonds 30 / 360 : Corporate bonds Les T-Bills sont cotés avec un Discount rate Le Discount rate est l’intérêt qu’il reste a gagner pour obtenir la valeur de maturité Il se calcul à partir du Prix coté, le Quote price P observable sur les marché Le prix payé Y , le Cash Price est une fonction du Quote price

Swaps Un swap est une entente entre deux parties qui prévoit l’échange de flux monétaires à des dates futures selon des modalités préétablies Un swap peut être considéré comme un portefeuille de contrats Forward Deux Catégories principales Swap de taux d’intérêt Swap de devises Marché très efficient avec de faibles frais de transaction Les banques gèrent principalement le marché Il n’y a pas de réglementation Il n’y a pas de marché secondaire Besoin de la contrepartie pour fermer la position Le risque de crédit n’est pas symétrique Utilisations Gestion du risque On a besoin de convertir un passif de: Taux fixe en taux flottant Taux flottant en taux fixe On a besoin de convertir un actif de: Arbitrage de crédit Ex.: Une compagnie cotée BBB emprunte au taux flottant relativement moins élevé qu’au taux fixe

Swaps Most swaps are traded over-the-counter (OTC), "tailor-made" for the counterparties. Some types of swaps are also exchanged on futures markets such as the Chicago Mercantile Exchange, the largest U.S. futures market, the Chicago Board Options Exchange, IntercontinentalExchange and Frankfurt-based Eurex AG. The five generic types of swaps, in order of their quantitative importance, are: interest rate swaps, currency swaps, credit swaps, commodity swaps and equity swaps. The most common type of swap is a “plain Vanilla” interest rate swap. It is the exchange of a fixed rate loan to a floating rate loan. The life of the swap can range from 2 years to over 15 years. The reason for this exchange is to take benefit from comparative advantage. Some companies may have comparative advantage in fixed rate markets, while other companies have a comparative advantage in floating rate markets. When companies want to borrow, they look for cheap borrowing, i.e. from the market where they have comparative advantage. However, this may lead to a company borrowing fixed when it wants floating or borrowing floating when it wants fixed.  A currency swap involves exchanging principal and fixed rate interest payments on a loan in one currency for principal and fixed rate interest payments on an equal loan in another currency. Just like interest rate swaps, the currency swaps are also motivated by comparative advantage. Currency swaps entail swapping both principal and interest between the parties, with the cashflows in one direction being in a different currency than those in the opposite direction. Conceptually, one may view a swap as either a portfolio of forward contracts, or as a long position in one bond coupled with a short position in another bond.

Swaps Évaluation d’un swap de taux d’intérêt Vswap = Bfix – Bvar Approche du portefeuille d’obligations Un swap de taux d’intérêt peut être évalué comme la différence entre les valeurs d’une obligation à taux fixe et une obligation à taux flottant. Vswap = Bfix – Bvar Bfix est la valeur présente de l’obligation à taux fixe Bvar est la valeur présente de l’obligation à taux variable Dans ce cas-ci, Vswap correspond à la valeur de la partie qui reçoit le taux fixe (achat de l’obligation) et qui paie le taux variable (vente ou émission de l’obligation) Approche de contrat FRAs On peut aussi évaluer un swap comme un portefeuille de contrat FRAs

Swaps L’obligation à taux fixe est évaluée de la manière habituelle, i.e. VN = valeur nominale de l’obligation C = coupon ti = échéance de chaque paiement ri = taux LIBOR zéro-coupon correspondant à ti L’obligation à taux variable est évaluée en tenant compte qu’elle est à parité immédiatement après la prochaine date de paiement. k = le paiement à taux variable

Swaps Approche de contrat FRAs Concept : Construction: On peut aussi évaluer un swap comme un portefeuille de contrat FRAs Concept : une obligation avec coupons constitue un portefeuille d’obligations zéro-coupon un swap, qui correspond à un échange de flux monétaires dans le futur, peut être considéré comme un portefeuille de FRA portant sur des dates différentes Construction: Calculer les taux forwards semestriels des taux LIBOR continu qui vont déterminer les flux monétaires du swap. Calculer les flux monétaires du swap en faisant l’hypothèse que les taux de coupon LIBOR seront les mêmes que les taux forwards calculés La valeur du swap égale la somme des valeurs présentes des flux monétaires calculés

Swaps Swaps de devises: Approche du portefeuille d’obligations Notation Vswap = BD – S0 BF où BD = valeur présente de l’obligation en devise locale BF = valeur présente de l’obligation en devise étrangère S0 = taux de change (locale/étrangère) Vswap correspond à la valeur de la partie qui reçoit la devise locale et qui paie en devises étrangères Approche du portefeuille de contrats forward De la même façon que pour le swap de taux d’intérêt, le swap de devises peut lui aussi être considéré comme une série de contrats à terme d’échéance différente Construction Calculer les taux de change à terme pour chacune des échéances. Calculer les flux monétaires du swap en faisant l’hypothèse que les taux à terme seront les taux en vigueur. La valeur du swap égale la somme des valeurs présentes des flux monétaires calculés

Options Option européenne: Option américaine: Option qui ne peut être exercée qu’à la date d’exercice. Option américaine: Option qui peut être exercée à tout instant jusqu’à la date d’exercice Valeur intrinsèque de la position longue Détenteur d’un call: Max {0, ST – K} Détenteur d’un put: Max {0, K – ST} Valeur intrinsèque de la Position courte Signataire d’un call: - Max {0, ST – K} Signataire d’un put: - Max {0, K – ST} Attention au signe « moins » K est le prix d’exercice et ST est le prix de l’actif sous-jacent au moment de l’exercice de l’option

Options Valeur intrinsèque et fonction de profits Position longue call ST K Position longue put Position courte put Position longue call Position courte call

Options Ajustements au contrat d’option pour les dividendes en actions et les fractionnement des actions (splits) Soit N options de prix d’exercice K: Il n’y a pas d’ajustement en cas de versement de dividendes en argent. Quand survient un fractionnement n-pour-m de l’action, le prix d’exercice est réduit de mK / n le nombre d’options augmente de nN / m Les dividendes en actions sont considérés de la même façon que les splits. Writing naked options Une naked option est une option pour laquelle le signataire ne détient pas le titre sous-jacent. La marge requise est le plus grand des deux montants suivants: 100% du montant de la vente + 20% du prix du sous-jacent moins le montant par lequel l’option est hors-jeu. 100% du montant de la vente + 10% du prix du sous-jacent Writing covered calls Dans ce cas, le signataire détient également le titre sous-jacent, de sorte que le risque est moindre. Il n’y a pas de marge requise avec un «covered call».

Options Les warrants sont des options émises (ou signées) par une entreprise ou une institution financière. Attention au risque de crédit ! Tout comme l’option, il confère à son détenteur le droit d’acheter des actions à un prix convenu durant une période déterminée. Lorsque les warrants sont exercés, la compagnie doit émettre de nouvelles actions. Alors qu’avec les options boursières, si exercées, on vend ou achète des actions qui ont déjà été émises Les options pour dirigeants (employee stock options) Options d’achat émises pour encourager les dirigeants à travailler pour les intérêts des actionnaires. Habituellement émises à parité. Elles ne peuvent être vendues. Lorsqu’elles sont exercées, la compagnie doit émettre de nouvelles actions.

Options Les obligations convertibles Les obligations convertibles sont des instruments de dette avec une option émise par l’entreprise. Le détenteur a le droit d’échanger les obligations contre des actions. Équivalent à une obligation avec un « embedded call » sur les actions. En général, ces obligations sont également rachetables.

Options Bornes Inférieures en absence de dividendes Call Put CE ≥ Max {0, S0 – K e-rT} CA ≥ Max {0, S0 – K } Put PE ≥ Max {0, K e-rT – S0} PA ≥ Max {0, K – S0} Bornes supérieures en absence de dividendes CE ≤ S0 CA ≤ S0 PA ≤ K PE ≤ K e-rT

Options Effet des dividendes Le dividende fait baisser la valeur de S. Parité Put-Call : Options européennes sans dividende CE + K e-rT = PE + S0 Parité put-call: options américaines sans dividende S0 - K ≤ CA - PA ≤ S0 - K e-rT Effet des dividendes Le dividende fait baisser la valeur de S. On remplace donc S0 par (S0 – I0) où I0 est la valeur présente du dividende sur la durée de l’option Sans dividende Avec dividende CE > S0 – K e-rT CE > S0 – I0 – K e-rT PE > K e-rT – S0 PE > K e-rT – (S0 – I0) PE + S0 = CE + K e-rT PE + S0 – I0 = CE + K e-rT

Options Facteurs affectant le prix des options Variable CE PE CA PA + - ↑ X ↑ σ ↑ r ↑ D ↑ T ?

Stratégies d’options K K ST ST Profit Profit Position de base Call Put Position longue dans sous-jacent Position longue dans put Résultat: position longue dans call Position courte dans sous-jacent Position longue dans call Résultat: position longue dans put

Profit ST K1 K2 Bull Spread avec calls Stratégie: achat d’un call à K1 et vente d’un call à K2

Bull Spread avec calls Pour contruire un bull spread avec des calls, le plus simple est de décomposer le graphique pour y retrouver des composantes qui ressemblent soit à l’achat ou à la vente d’un call. Dans le cas d’un bull spread, si on regarde la partie gauche du graphique, on constate qu’elle ressemble à l’achat d’un call avec un prix d’exercice de K1. Comme la stratégie finale cesse de croître après K2, il faut donc limiter le gain illimité provenant de l’achat de notre call à K1. Pour ce faire, on doit trouver un moyen d’avoir une perte correspondant au gain pour que l’effet total après K2 soit nul. Comme on n’utilise que des calls dans cette stratégie, notre seul choix est de vendre une option d’achat à K2, ce qui annulera le gain du call à K1 lorsque le prix de l’action sera supérieur à K2. Remarquez que la vente de l’option d’achat à K2 procurera un revenu qui viendra diminuer le coût d’achat du call à K1. C’est d’ailleurs l’intérêt de cette stratégie, car elle permet de profiter de la hausse du sous-jacent (tout comme un call) mais elle coûte moins cher parce qu’on sacrifie une partie du gain qu’on pourrait faire si le sous-jacent atteint une valeur supérieure à K2.

Profit K1 K2 ST Bull Spread avec puts Stratégie: Achat d’un Put à K1 et Vente d’un Put à K2

Bull Spread avec puts Pour contruire un bull spread avec des puts, le plus simple est de décomposer le graphique pour y retrouver des composantes qui ressemblent soit à l’achat ou à la vente d’un put. Dans le cas d’un bull spread, si on regarde la partie droite du graphique, on constate qu’elle ressemble à la vente d’un put avec un prix d’exercice de K2. Comme la stratégie finale cesse de perdre de la valeur avant K1, il faut donc limiter la perte provenant de la vente de notre put à K2. Pour ce faire, on doit trouver un moyen d’avoir un gain correspondant à la perte pour que l’effet total avant K1 soit nul. Comme on n’utilise que des puts dans cette stratégie, notre seul choix est d’acheter une option de vente à K1, ce qui annulera la perte du put à K2 lorsque le prix de l’action sera inférieur à K1.

Profit K1 K2 ST Bear Spread avec calls Stratégie: vente d’un call à K1 et achat d’un call à K2

Profit K1 K2 ST Bear Spread avec puts Stratégie: vente d’un put à K1 et achat d’un put à K2

Butterfly Spread avec calls Profit K1 K2 K3 ST Stratégie: achat d’un call à K1, vente de deux calls à K2 et achat d’un call à K3

Butterfly Spread avec calls Pour contruire un butterfly spread avec des calls, le plus simple est de décomposer le graphique pour y retrouver des composantes qui ressemblent soit à l’achat ou à la vente d’un call. Dans le cas d’un butterfly spread, si on regarde la partie gauche du graphique, on constate qu’elle ressemble à l’achat d’un call avec un prix d’exercice de K1. Comme la stratégie finale cesse de croître après K2, il faut donc limiter le gain illimité provenant de l’achat de notre call à K1. Pour ce faire, on doit trouver un moyen d’avoir une perte correspondant au gain pour que l’effet total après K2 soit nul. Comme on n’utilise que des calls dans cette stratégie, notre seul choix est de vendre une option d’achat à K2, ce qui annulera le gain du call à K1 lorsque le prix de l’action sera supérieur à K2. Par contre, on ne veut pas qu’annuler le gain, on veut aussi que le profit de la stratégie diminue à partir de K2. Il faudra donc vendre un deuxième call à K2 si on veut générer un profit négatif à partir de K2.

Butterfly Spread avec puts Profit K1 K2 K3 ST Stratégie: achat d’un put à K1, vente de deux put à K2 et achat d’un put à K3

Types de stratégies mixtes (spreads) Mixte verticale (Bull, Bear et Butterfly) Même échéance Différents prix d’exercice Mixte horizontale (calendar spreads) Différentes échéances Même prix d’exercice Mixte diagonale (diagonal spreads)

Calendar Spread avec calls Profit ST K Stratégie: vente d’un call à T1 et achat d’un call à T2

Calendar spread avec calls Pour comprendre le graphique précédent, il faut savoir qu’on doit choisir un moment dans le temps pour «geler» la fonction de profit, puisque nous avons deux options avec des échéances différentes. Le plus simple est de se positionner à T1. Ensuite, il suffit de réaliser que la position longue dans l’option d’achat avec une échéance de T2 est encore en vie à T1. Cela signifie que sa valeur est supérieure à sa valeur intrinsèque (ou minimale), d’où la ligne courbe pour représenter sa valeur.

Calendar Spread avec puts Profit ST K Stratégie: vente d’un put à T1 et achat d’un put à T2

Les combinaisons Elles consistent à prendre des positions dans des puts et des calls simultanément sur le même sous-jacent. Elles regroupent : les straddles les strips et straps les strangles

Position double (Straddle) Profit K ST Stratégie: achat d’un put à K et achat d’un call au même K

Positions triples de vente et d’achat (Strip & Strap) Profit Profit K ST K ST Strip Strap Stratégie strip: achat de deux puts à K et achat d’un call à K Stratégie strap: achat d’un put à K et achat de deux calls à K

Position combinée (Strangle) Profit K1 K2 ST Stratégie: achat d’un put à K1 et achat d’un call à K2

Achat et vente d’une combinaison Achat d’un straddle Vente d’un straddle Profit Profit K ST K ST

Les arbres binomiaux Modèle Général Su Δ – cu = Sd Δ – cd d’où Construction du portefeuille sans risque Position longue dans Δ actions Position courte dans une option Trouver le Δ rendant le portefeuille sans risque Su Δ – cu = Sd Δ – cd d’où Dsu - cu DS - c DSd - cd

c = e–rT [ p x cu + (1-p) x cd] Les arbres binomiaux Modèle Général La valeur présente du portefeuille sans risque est: S D – c = (Su D – cu) e–rT En substituant D par et en posant On obtient: c = e–rT [ p x cu + (1-p) x cd] le prix d’une option est alors la valeur présente de l’espérance de la valeur de l’option à la période suivante. p est la probabilité neutre au risque

Probabilités Réelles versus Probabilités Neutres au Risque Dans l’arbre du prix d’une action, l’action a une probabilité réelle q de monter à Su et une probabilité réelle (1-q) de diminuer à Sd. Donc, E[ST] = q Su + (1-q) Sd La probabilité réelle q varie d’un investisseur à l’autre selon ses anticipations et elle est utilisée pour évaluer le prix d’une action

Probabilités Réelles versus Probabilités Neutres au Risque La probabilité neutre au risque est celle utilisée pour déterminer le prix de l’option. C’est une méthode de calcul permettant d’actualiser les flux monétaires d’une option au taux sans risque (r) Important : On n’utilise jamais les probabilités historiques de l’action pour le calcul de l’option! Il n’y a aucun lien entre la probabilité réelle q et la probabilité neutre au risque p

Probabilités Réelles versus Probabilités Neutres au Risque Monde Risque-Neutre versus réél Supposons que la probabilité risque-neutre (p) est égale à la probabilité réelle (q). E[ST] = pSu + (1-p)Sd En substituant p par On obtient: E[ST] = S erT Cela implique, qu’en moyenne, le prix de l’action augmente au taux sans risque Dans un monde neutre au risque, tous les investisseurs sont indifférents face au risque, c’est-à-dire qu’ils n’exigent pas de compensation pour le risque

Arbre binomial à deux périodes c Sd cd Su cu Suu cuu Sud cud Sdd cdd T1 T0 T2 Modèle Général :

Arbre binomial à deux périodes Généralisation : Calculer la probabilité Construire le 3ième niveau de l’arbre cuu = max {0 ; Suu – K} cud = max {0 ; Sud – K} cdd = max {0 ; Sdd – K} Construire le 2ième niveau de l’arbre cu = e-rΔT {p x cuu + (1-p) x cud} cd = e-rΔT {p x cud + (1-p) x cdd} Construire le 1er niveau de l’arbre c = e-rΔT {p x cu + (1-p) x cd} Remarque: ΔT correspond à l’intervalle de temps entre deux nœuds.

Le D d’un Call est positif Le D d’un Put est négatif Le DELTA Définition: Le delta d’une option est le ratio de la variation du prix de l’option par rapport à la variation du prix de l’action. Mathématiquement : Le D est la dérivée partielle du prix de l’option par rapport au prix de l’action Le D d’un Call est positif Le D d’un Put est négatif

Arbres binomiaux en pratique À l’échéance de l’option, il est peu probable que le prix de l’action tombe sur une des trois valeurs de l’arbre. Pour ajouter de la précision, il faut ajouter des nœuds (périodes) 30 nœuds ou plus donne une bonne approximation Comment détermine-t-on la valeur de u et d? On se base sur la volatilité du titre sous-jacent (σ) On fait aussi des ajustements à chaque période pour tenir compte du fait que les taux d’intérêt ne sont pas constants d’une période à l’autre.

Black & Scholes C : Call P : Put K : Prix d’exercice T : échéance de l’option S : Action sous-jacente s2 : Variance annuelle du sous-jacent r : Taux sans risque N(x) = Probabilité normale

Options Américaines Rappel: il n’est jamais préférable d’exercer une option call américaine lorsqu’il n’y a pas de dividende Alors, le prix d’une telle option call américaine (sans div.) est le même que celui d’une option call européenne. Ce n’est pas le cas lorsque le titre sous-jacent verse des dividendes. On peut cependant ajuster la formule de Black-Scholes pour faire une approximation. Dans le cas d’une option put américaine, il n’est pas possible d’utiliser la formule de Black-Scholes, peu importe qu’il y ait des dividendes ou non

Effet des Dividendes Dans le cas d’une option Call européenne, on peut calculer son prix en substituant la valeur du prix de l’action par le prix de l’action diminué de la valeur présente des dividendes. On peut procéder uniquement avec des montants absolus On remplace donc S0 par (S0 – VA (Div)) dans la formule de Black-Scholes. Dans le cas d’une option call américaine, il se peut qu’il soit préférable d’exercer l’option, et si c’est le cas, ce sera juste avant la date ex-dividende. Si l’action verse un dividende en continu au taux q, on utilisera la formule de Black- Scholes dans la partie d’acétates Option sur Indices boursiers et devises

Titre sous-jacent procurant un rendement continu On peut obtenir la même distribution de probabilités pour le prix de l’action au temps T pour chacun des deux cas suivants: Le prix initial est S0 et procure un taux continu de dividendes égal à q. Le prix initial est S0 e–qT et ne procure aucun revenu. On peut donc évaluer une option européenne en réduisant le prix initial à S0 e–qT et en supposant qu’il n’y a pas de dividende

Effet sur les bornes inférieures Borne inférieure pour une option d’achat Borne inférieure pour une option de vente

Effet sur la parité put-call

Effet sur la méthode binomiale Dans un monde neutre au risque, le prix de l’action croît au taux r-q au lieu du taux r lorsqu’il y a un taux de dividende q. La probabilité p, pour un mouvement à la hausse, doit donc satisfaire : pS0u + (1 – p) S0d = S0 e (r-q)T de sorte que Le prix de l’option se calcule toujours de la même façon: c = e–rT [ p x cu + (1-p) x cd ] L’évolution du prix de l’action n’est pas affectée. Seule la probabilité p est modifiée

Effet sur la formule de Black-Scholes

Approche alternative

Description et fonctionnement des options sur Futures Option Call sur Futures Quand une option Call sur Futures est exercée, le détenteur acquiert : Une position longue dans le Future Un montant d’argent égal à la différence entre le prix Futures et le prix d’exercice Flux de l’option = Max{0, F - K}

Description et fonctionnement des options sur Futures Option Put sur Futures Quand une option put sur Futures est exercée, le détenteur acquiert : Une position courte dans le Futures Un montant d’argent égal à la différence entre le prix d’exercice et le prix Futures Flux de l’option = Max{0, K - F}

Avantages potentiels des options sur Futures Les contrats Futures sont plus liquides que les actifs sous-jacents. Les Futures se transigent facilement. Le prix Futures est en général disponible tandis que le prix spot ne l’est pas toujours. L’exercice de l’option ne conduit généralement pas à la livraison du sous-jacent. Les options sur Futures engendrent de faibles coûts de transaction

Évaluation avec arbre binomial Généralisation : Construction d’un portefeuille sans risque Position longue dans Δ contrats Futures Position courte dans une option Trouver le Δ rendant le portefeuille sans risque (F0u – F0)Δ – cu = (F0d – F0)Δ – cd (F0u – F0)Δ - cu (F0d – F0)Δ - cd (F0 – F0)Δ - c

Évaluation avec arbre binomial Généralisation : La valeur présente du portefeuille sans risque est [(F0u–F0)Δ – cu] e–rT Cette valeur doit être égale au coût initial [(F0u–F0)Δ – cu] e–rT = (F0 – F0)Δ – c – c = [(F0u – F0)Δ – cu)] e–rT En substituant et en posant on obtient: c = e–rT [ p x cu + (1-p) x cd ]

Évaluation avec Black-Scholes Principe : On peut considérer un Futures comme un actif versant un taux de dividende r

Prix des options sur Futures vs options sur titre sous-jacent Option américaine: Si F>S, alors cF > cS et pF < pS Si F<S, alors c’est le contraire Option européenne: Si échéance de l’option F = échéance de F, alors option F = option S Si échéance de l’option F< échéance de F, alors cF > cS si F > S et cF < cS si F < S C’est l’inverse dans le cas d’une option de vente

Résumé des parités put-call

Synthèse des résultats pour options On peut considérer les indices boursiers, les devises et les Futures comme étant des titres payant un taux continu de dividendes Pour un indice boursier, q = moyenne du taux de dividendes de l’indice au cours de la vie de l’option Pour une devise étrangère, q = rƒ Pour un Futures, q = r Impact sur la méthode binomial :

Options sur Obligations avec F0 = (B – I0) e rT

Options sur Taux d’intérêt Un CAP : Un cap est série d’options call sur taux d’intérêt Chaque Option Call est appelé Caplet L’effet de ces options call est de faire en sorte que le taux d’intérêt que l’on paiera sur un emprunt, par exemple, ne dépassera pas un taux maximum Le flux monétaire généré par l’option correspond donc à la différence entre le taux d’intérêt à terme et le taux du cap, ou le taux maximum (taux d’exercice) Un cap a aussi la particularité que le flux monétaire sera versé à une date postérieure à la date d’exercice de l’option

Options sur Taux d’intérêt Un CAP : Graphique Taux d’intérêt CAP Taux d’intérêt avec cap Temps

Options sur Taux d’intérêt Un CAP : Un Cap correspond à une option call sur le taux d’intérêt. Pour un emprunteur, un Cap permet de garantir un taux d’emprunt maximum Profit r Profit de la position Position de l’emprunteur Cap r

Options sur Taux d’intérêt Un Floor : Un Floor correspond à une option put sur le taux d’intérêt. Pour un prêteur, un Floor permet de garantir un taux de placement minimum r Profit r Profit Position du prêteur Floor

Options sur Taux d’intérêt Un Collar : Position longue dans un Cap plus position courte dans un Floor. Les prix d’exercices sont choisis de façon à ce que le coût soit nul c - p = 0 équivalent à Cap – Floor = 0 Ce qui implique que rK1 et rK2 seront forcément différents. Pour un emprunteur, un Collar garantit que le taux variable payé sera toujours entre deux valeurs

Options sur Taux d’intérêt Le Collar : Graphique r Profit Pos. courte dans Floor r Profit rX1 rX2 Collar rX1 rX2 Pos. longue dans Cap

Options sur Taux d’intérêt Un Collar : Position de l’emprunteur Profit r Profit rX1 rX2 Position de l’emprunteur r rX1 rX2 Collar

Options sur Taux d’intérêt Parité : Cap, Floor et Swap Long Cap + Short Floor = Long Swap r Profit r Profit Pos. longue dans swap Pos. courte dans Floor rK rK Pos. longue dans Cap

Options sur Taux d’intérêt Évaluation d’un Cap À l’échéance de chaque caplet, on choisit d’exercer ou pas à t=k À t=k, on fixe le taux d’intérêt en vigueur entre t=k et t=k+1 Le paiement d’intérêt sur un emprunt se fait à la fin de la période L’échange de flux se fait à t=k+1 La valeur du Cap est la somme de chaque Caplet Fk Fk - RX k k+1 t Échéance de l’option

Options sur Taux d’intérêt Évaluation d’un Cap avec Black-Scholes La valeur d’un Caplet pour la période [tk, tk+1] est Fk : taux forward sur (tk, tk+1) sk : volatilité des taux d’intérêt rk+1 : taux spot d’échéance tk+1 L : principal RK : taux cap dk=tk+1-tk

Options sur Taux d’intérêt Évaluation d’un Floor La valeur d’un Floor est évaluée de la même manière et la valeur d’un «Floorlet» est

Évaluation d’une Obligation Rachetable avec arbre binomial Une obligation peut être rachetable au gré de l’émetteur ou du porteur à un prix prédéterminé et pendant une période déterminée. L’obligation comporte donc une option qui peut être évaluée à l’aide de la méthode binomiale

Évaluation d’une Obligation Rachetable avec arbre binomial Obligation rachetable au gré de l’émetteur Prix Valeur de rachat Prix Valeur de rachat Valeur de l’obligation rachetable au gré de l’émetteur r r

Évaluation d’une Obligation Rachetable avec arbre binomial Obligation rachetable au gré de l’émetteur À chaque étape on calculera la valeur de l’obligation : P = C + Min[ Valeur de rachat ; (50% Pu + 50% Pd ) / 1+r ] Prix Valeur de rachat conservé si prix < prix calculé Valeur de l’obligation rachetable calculé au gré de l’émetteur r

Évaluation d’une Obligation Rachetable avec arbre binomial Obligation rachetable au gré du porteur (acheteur) Prix r Prix Valeur de rachat Valeur de l’obligation rachetable au gré du porteur Valeur de rachat r

Évaluation d’une Obligation Rachetable avec arbre binomial Obligation rachetable au gré du porteur (acheteur) À chaque étape on calculera la valeur de l’obligation : P = C + Max [ Valeur de rachat ; (50% Pu + 50% Pd ) / 1+r ] r Prix Valeur de rachat conservé si > au prix calculé Valeur de l’obligation rachetable calculée au gré du porteur

Évaluation d’une Obligation Rachetable avec arbre binomial Obligation rachetable au gré de l’émetteur Exemple: Reprenons les données de l’exemple précédent et supposons que l’obligation est rachetable en tout temps à un prix de 101$ L’obligation de 3 ans avec un coupon annuel de 8.5% et une valeur nominale de 100$. le taux d’intérêt actuel pour un an est de 8% (taux discret) et qu’à chaque année, il peut monter ou descendre de 20% avec une probabilité égale. Quel est le prix de l’obligation rachetable et quelle est la valeur de l’option d’achat pour l’émetteur?

Calcul du prix de l’obligation avec l’option 108.5 108.5 108.5 108.5 T=2 109.5 ; 111.72 exerce 109.5 ; 109.26 n’exerce pas 109.5 ; 105.79 T=1 109.5 ; 111.30 exerce 109.5 ; 106.61 n’exerce pas T=0

Évaluation d’une Obligation Rachetable avec arbre binomial Obligation rachetable au gré de l’émetteur Quel est le prix de l’obligation rachetable : 100.05$ Quelle est la valeur de l’option d’achat pour l’émetteur?

Assurance de portefeuille d’actions Différence entre assurance et couverture Couverture de portefeuille: Stratégie qui permet d’éliminer complètement ou partiellement la valeur d’un portefeuille. Le mot «couverture» est souvent utilisé dans le sens d’une stratégie qui élimine le risque complètement, donc que la valeur d’un portefeuille ne changera pas. Assurance de portefeuille: La notion d’assurance de portefeuille est similaire à la notion de couverture sauf que le terme «assurance» définit généralement une stratégie qui garantit une valeur minimum pour le portefeuille, et donc s’apparente à une option de vente.

Couverture de portefeuille d’actions avec des contrats à terme Ratio de couverture à variance minimum La proportion d’exposition qui doit être optimalement couverte est: S: prix spot F: prix Futures σS: écart-type de ΔS σF: écart-type de ΔF ρ: coefficient de corrélation entre ΔS et ΔF Portefeuille non couvert Prix de l ’action Futures couvert

Couverture de portefeuille d’actions avec des contrats à terme Ratio de couverture à variance minimum Nombre optimal de contrats: N* = h* (NA / QF) NA : Nombre d'unités spot à couvrir QF : Nombre pour chaque contrat Futures N* : Nombre optimal de contrat Futures h* : La proportion d’exposition

Couverture de portefeuille d’actions avec des contrats à terme Couverture à l’aide d’un Futures sur indice boursier Nombre optimal de contrats: N* = b (S / F*) b : Beta d'un portefeuille, représentant la sensibilité de la valeur du portefeuille aux variations du rendement du marché S : Valeur totale du portefeuille F*:Valeur sous-jacente à 1 contrat futures, soit le prix Futures de l’indice x taille d’un contrat

Couverture de portefeuille d’actions avec des Options On considère un portefeuille d’actions et d’options La valeur du portefeuille total est V = S + h O La valeur du portefeuille couvert doit rester constant si la valeur des actions varie : On cherche donc à avoir ΔV/ΔS = 0 h = - 1/(Δ de l’option) Prix de l’option S c Pente =  l’action

Couverture de portefeuille d’options – Delta Hedging Calcul du D d’une option Delta d’une option d’achat Δc= N(d1) > 0 Delta d’une option de vente Δp = N(d1) – 1 < 0 Δp = Δc – 1 < 0 De façon générale, avec q le taux de dividende : Δc = e–qT N(d1) > 0 Δp = e–qT [N(d1) -1] < 0

Couverture de portefeuille d’options – Delta Hedging Delta Hedging avec Futures On remplace le sous-jacent par son prix Futures. Le prix Futures est très corrélé avec le prix spot. Les frais de transactions sont moins élevés, et on ne débourse rien à l’origine. Ajustements nécessaires: Prix Futures: F = S e(r-q)T Variation: ΔF = ΔS e(r-q)T donc, besoin d’une moins grande quantité de Futures Quantité de Futures à détenir QFutures = e–(r-q)T Qactif sous-jacent

Couverture de portefeuille d’options – Delta Hedging Delta d’un portefeuille d’options de sous-jacent identique avec wi = nombre d’options i

Les Lettres Grecques : Indices de sensibilités Gamma (G) est le taux de variation de delta (D) par rapport au prix du sous-jacent. Vega (V) est le taux de variation de l’option par rapport à la volatilité. Rho est le taux de variation de la valeur de l’option par rapport au taux d’intérêt. Theta (t) d’une option est le changement de sa valeur par rapport à la variation de temps

Les Lettres Grecques : Indices de sensibilités Modification du Gamma : Le Gamma est l’équivalent de la convexité Il est le même pour un put ou un call Une faible valeur du Gamma indique que le Delta est peu sensible aux variations du sous-jacent, de sorte que les ajustements de couverture seront moins fréquent

Les Lettres Grecques : Indices de sensibilités Modification du Gamma Pour modifier le Gamma d’un portefeuille, on doit introduire une certaine quantité d’options supplémentaires au portefeuille nouveauГptf = vieuxГptf + w Гnouvelle option Si on désire que le Gamma soit égal à zéro, alors on doit ajouter

Les Lettres Grecques : Indices de sensibilités Modification du Vega le taux de variation de l’option par rapport à la volatilité Le Vega est le même pour une option d’achat ou de vente.

Les Lettres Grecques : Indices de sensibilités Modification du Vega Pour modifier le Vega d’un portefeuille, on doit introduire une certaine quantité d’options supplémentaires au portefeuille: nouveauVptf = vieuxVptf + w Vnouvelle option Si on désire que le Vega soit égal à zéro, alors on doit ajouter

Les Lettres Grecques : Indices de sensibilités Modification du rho Option d’achat: Option de vente:

Les Lettres Grecques : Indices de sensibilités Modification du Theta Option d’achat: Option de vente:

VaR = 2.33 x √N x sj x Valeur du portefeuille La VaR, Value at Risk Qu’est ce que la Value at Risk (VaR)? La VaR consiste à être certain à X% de ne pas perdre plus de V dollars dans les N prochains jours. VaR = 2.33 x √N x sj x Valeur du portefeuille Exemple: Être certain à 99% de ne pas perdre plus de V dollars dans les prochains 10 jours. V est la VaR de 10 jours pour un intervalle de confiance de 99%.