Etalonnage d’une caméra (on parle aussi de calibrage)

Slides:



Advertisements
Présentations similaires

Advertisements


Bonne nutrition et sécurité alimentaire et meilleurs moyens d’existence pour les communautés agricoles dans terrains arides Pourquoi cette étude sur des.
ECO1 Introduction à l’économie
REVISION du COURS E = En- Ep = h
Compilation E. RAMAT
Mémoires résistives : Monte Carlo nouvel acte?
Les Moteurs ASynchrones
REGARDS CROISéS SUR LA PROPORTIONNALITE
Fabian Bergès, Elise Maigné, Sylvette Monier-Dilhan et Thomas Poméon
Équipe MAREL novembre 2016 Modelica Un langage pour modéliser et simuler des systèmes dynamiques hybrides
COUR DE TRAITEMENT NUMERIQUE DES SIGNAUX
La suite bureautique OpenOffice.org
Les descentes de charge
African Economic Conference (AEC)
Notions d’éclairagisme pour les ouvrages intérieurs
RES 203 Applications Internet
Un ébranlement sur une corde se propage à la vitesse c=1 cm/s
Projet GEPET-EAU Etude de la résilience et optimisation de la gestion des réseaux de voies navigables dans un contexte de changement climatique.
Laboratoire de Structure du Nucléon
2. Approbation de l’agenda 3. Compte-rendu de la dernière rencontre
Cu2+(aq) Doser ?? Doser une espèce chimique… …efficacement…
La procédure PASAPAS et les procédures utilisateurs
Agrégation SII OPTION ingénierie des Constructions
BASE DE SONDAGE PRINCIPALE (BSP) LES STATISTIQUES AGRICOLES
RELATIONS BIOMÈTRIQUES D'UN CYPRINIDAE ENDÉMIQUE,
FRACTIONS ET NOMBRES DECIMAUX
Microcontrôleur.
mathématiques et physique-chimie au cycle 3
Electrochimie: réactions d’oxydo-réduction
ELECTROTECHNIQUE CM: 10h; TD: 20h; TP: 30h
La masse volumique.
TD 8 – Chaînes de montagnes - Tectonique des plaques

Cinquième Chapitre 2: Solides
Quittons notre berceau
TD 7- Réactions minéralogiques et bilans chimiques
Information, Calcul, Communication
Dimitri Zuchowski et Marc-Élie Lapointe
JTED, Novembre 2016, Toulouse
La révolution numérique : comment s’emparer des opportunités sans négliger les dangers ? Virginie Fauvel, Membre du Comité Exécutif d’Allianz France en.
COURS D’INFORMATIQUE INDUSTRIELLE www. massaleidamagoe2015
A M E J Association des Médecins Experts Judiciaires
Module 1: Cinématique SPH3U4C.
ECO1 Introduction à l’économie
Stratégies en matière de plan de sondage et d’échantillonnage
Sciences de l’Ingénieur
Objectif : remplacer les tâches Répétitives Pénibles Complexes
PILES ET ACCUMULATEURS - RÉACTIONS D’OXYDORÉDUCTION
Introduction à l’économie Amphi 1 Qu’est ce que l’économie ?
Principe de fonctionnement d'une cellule photo voltaïque
Thème 3 : Défis du XXIe siècle..
Utilisez les flèches de droite et de gauche pour naviguer.
5.1 Systèmes d’équations linéaires
Optique géométrique Laboratoires de physique de 1ère année
Le projet interdisciplinaire CeraR : Céramique archéologique avec R
Les outils Word Les outils Word constituent la base des outils utilisés dans la presque totalité des logiciels applicatifs. Reconnaitre les icones des.
Télémédecine et Diabète de type 1 Le systeme Diabéo
VICTOR HUGO et la SRO Un partenariat ville-hopital en rhumatologie
Maladie d’Ollier / Maffucci Projet de dépistage des gliomes
Les plateformes de simulation au service des GHT et des territoires
Les pratiques en classe, notamment avec le numérique et le jeu.
Le dépistage de la déficience cognitive chez les adultes plus âgés: Recommandations 2015 Groupe d’étude canadien sur les soins de santé préventifs (GECSSP)
Les réformes de la formulation budgétaire en Ouganda
Préparation à l’examen
Une introduction à la démographie (L'étude de la population)
Travaux dirigés d’ Atomistique
Le premier principe de la thermodynamique
Thème 1 : Ondes et Matière.
Transcription de la présentation:

Etalonnage d’une caméra (on parle aussi de calibrage) Patrick Hébert & Denis Laurendeau (Dernière révision : juin 2016)

Notion de plan image normalisé (parfois utilisé pour simplifier les développements)

En plus du modèle de caméra sténopé non-inverseur vu précédemment, on retrouve aussi dans la littérature le concept de plan image normalisé illustré ci-dessous, qui facilite les manipulations pour certains problèmes: Si on revient au modèle général de la projection de perspective: 𝑝 =𝑠 𝑚 = 𝐾 3𝑥3 𝑅 𝑡 − 𝑅 𝑡 𝑡 3𝑥4 𝑃  𝑤 le facteur d’échelle s implique que l’échelle du du problème est inconnue. Le plan image normalisé assume que la focale du sténopé (paramètre f dans la matrice des paramètres intrinsèques K) est unitaire (f = 1) et que le paramètre q de K est nul.

Avec la géométrie ci-dessus pour le plan image normalisé, la projection de perspective peut s’écrire (avec f = 1): 𝑢 = 𝑥 𝑧 𝑢 𝑣 𝑤 = 1 0 0 0 1 0 0 0 1 0 0 0 𝑋 𝑌 𝑍 1 𝑝 = 𝑢 𝑣 1 en posant on peut écrire: 𝑣 = 𝑦 𝑧 𝑝 = 1 𝑧 1 0 0 0 1 0 0 0 1 0 0 0 𝑃 c’est le terme en 1/f vu précédemment avec f =1 𝑧​​  𝑝 = 𝑀   𝑃

Calibrage avec le plan image physique

Pour le plan image physique Si on veut travailler en vraies grandeurs (i.e. dans le plan image physique plutôt que dans le plan image normalisé), il faut transformer les coordonnées images mesurées en mm en coordonnées images exprimées en pixels. On peut modéliser cette operation par les expressions suivantes: 𝑢=𝜅 𝑓  𝑥 𝑧 les paramètres 𝜅 et 𝜄 représentent des facteurs d’echelle en pixels / mm pour les axes x et y du plan image et f est la distance focale du sténopé et définit le “grossissement” de l’image. 𝑣=𝜄 𝑓  𝑦 𝑧 On pose généralement 𝛼=𝜅 𝑓 et 𝛽=𝜄 𝑓 de sorte qu’on n’a pas à calibrer f comme tel, mais simplement a et b

Nous avons aussi vu que le repère image est décalé de u0 et v0 par rapport au repère image, ce qui revient à écrire: 𝑢=𝛼​ 𝑥 𝑧 + 𝑢 0 𝑣=𝛽 𝑦 𝑧 + 𝑣 0 Si les axes du repère “affine” de la caméra ne sont pas orthogonaux, on doit prendre en compte la situation géométrique suivante dans le modèle lors du calibrage: axe v point image v v 𝑣 𝑐 = 𝛽 𝑦 𝑧 sin(𝜃 + 𝑣 0 c sin 𝜃 = 𝑣 𝑣 𝑐 en tenant compte de la translation q 𝑢 𝑐 = 𝛼 𝑥 𝑧 − 𝛼cot(𝜃 𝑧 + 𝑢 0 tan 𝜃 = 𝑣 𝑢− 𝑢 𝑐 en tenant compte de la translation axe u   u c u 𝑦 𝑧 mis à l’echelle selon l’axe u

À la diapo 4 on a déjà établi que: Avec ces derniers développement on peut écrire la transformation permettant de passer du plan image normalisé au plan image physique: 𝑝 𝑐 = 𝐾   𝑝 = 𝛼 −𝛼cot(𝜃 𝑢 0 0 𝛽 sin(𝜃 𝑣 0 0 0 1 𝑝 Point image sur le plan image physique Point image sur le plan image normalisé À la diapo 4 on a déjà établi que: 𝑝 = 1 𝑧 1 0 0 0 0 1 0 0 0 0 1 0 𝑃   𝑐𝑎𝑚𝑒𝑟𝑎 Avec ce qui précède on peut écrire: 𝑝 = 1 𝑧 𝛼 −𝛼cot(𝜃 𝑢 0 0 𝛽 sin(𝜃 𝑣 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 𝑃 𝑐𝑎𝑚𝑒𝑟𝑎

Dans le repère de la caméra, on peut donc écrire que la projection de perspective a pour expression: 𝑧 𝑝 = 𝛼 −𝛼cot(𝜃 𝑢 0 0 0    𝛽 sin(𝜃    𝑣 0    0 0        0           1       0 𝑃   𝑐𝑎𝑚𝑒𝑟𝑎

Dans le repère “world”, on peut finalement écrire que la projection de perspective pour laquelle il faut calibrer les paramètres a pour expression: 𝑧 𝑝 𝑐 = 𝐾 0 𝑅 𝑡 − 𝑅 𝑡 𝑡 𝑃   𝑤𝑜𝑟𝑙𝑑 [ [ [ [ Conversion du plan image normalisé au plan image physique (matrice 3 x 3) Vecteur exprimant la translation du repère “world” dans le repère caméra (vecteur 3 x 1) Vecteur de “padding” (3 x 1) Matrice exprimant la rotation du repère “world” dans le repère caméra (matrice 4 x 3)

Pour simplifier, on écrit: 𝜌   3𝑥3 = 𝑅 𝑡 = 𝜌 1 𝑡 𝜌 2 𝑡 𝜌 3 𝑡 où les sont les lignes de la transposée de la matrice de rotation 𝜌 𝑖 𝑡 …𝑖=1,2,3 et − 𝑅 𝑡 𝑡 = 𝑡 𝑥 𝑡 𝑦 𝑡 𝑧 où le vecteur t représente la translation du repère “world” dans le repère caméra On peut rendre la notation encore plus compacte pour les fins du calibrage en écrivant simplement 𝑧 𝑝 𝑐 = 𝑚 1 𝑡 𝑚 2 𝑡 𝑚 1 3 𝑡 𝑃  4𝑥1 𝑤𝑜𝑟𝑙𝑑 𝑧 𝑝 𝑐 = 𝑀 3𝑥4 𝑃 4𝑥1 𝑤𝑜𝑟𝑙𝑑 = 𝑚 11 𝑚 12 𝑚 13 𝑚 14 𝑚 21 𝑚 22 𝑚 23 𝑚 24 𝑚 31 𝑚 32 𝑚 33 𝑚 34 𝑃  4𝑥1  𝑤𝑜𝑟𝑙𝑑 ou encore éléments non-nuls quand c’est une transformation projective

comporte 12 composantes, mais seulement 11 sont En utilisant l’expression de 𝐾     𝑒𝑡      𝜌 on a pour les éléments de 𝑀 𝑚 1 𝑡 𝑚 2 𝑡 𝑚 3 𝑡 = 𝛼 𝜌 1 𝑡 −𝛼cot(𝜃) 𝜌 2 𝑡 + 𝑢 0 𝜌 3 𝑡 𝛽 sin(𝜃 𝜌 2 𝑡 + 𝑣 0 𝜌 3 𝑡 𝜌 3 𝑡 𝛼 𝑡 𝑥 −𝛼cot(𝜃) 𝑡 𝑦 + 𝑢 0 𝑡 𝑧 𝛽 sin(𝜃 𝑡 𝑦 + 𝑣 0 𝑡 𝑧 𝑡 𝑧 Matrice 3 x 3 Vecteur 3 x 1 La matrice comporte 12 composantes, mais seulement 11 sont 𝑀 indépendantes car si on met en évidence, il peut être assimilé 𝑚 34 au facteur d’échelle de dans 𝑝  𝑐 𝑧  𝑝  𝑐 = 𝑀 3𝑥4 𝑃  4𝑥1 𝑤𝑜𝑟𝑙𝑑

Calibrer la caméra consiste à estimer les 11 𝑚 𝑖𝑗 indépendants. A partir de ces 11 indépendants , on peut, si cela s’avère necessaire, estimer les paramètres intrinsèques et les paramètres extrinsèques (les ) 𝛼, 𝛽, 𝜃,  𝑢 0 ,  𝑣 0 𝜌 𝑖 𝑡  𝑒𝑡  𝑡 𝑖 Il existe plusieurs méthodes pour estimer les composantes de la matrice M. La plu- part de ces méthodes utilisent une cible de calibrage qui contient des points dont les coordonnées sont connues dans le repère “world”. On observe les images de ces points dans le repère image physique. On obtient les correspondances avec lesquelles on estime les composantes de la matrice M avec une approche d’optimisation. 𝑝 𝑐   𝑃  𝑤𝑜𝑟𝑙𝑑

Principe général

Approche de calibrage linéaire Revenons à l’expression 𝑧 𝑝 𝑐 = 𝑚 1 𝑡 𝑚 2 𝑡 𝑚 1 3 𝑡 𝑃  4𝑥1 𝑤𝑜𝑟𝑙𝑑 qu’on peut développer comme suit pour expliciter la procédure de calcul 𝑢 𝑐 𝑣 𝑐 𝑠 = 𝑚 1 𝑡 𝑚 2 𝑡 𝑚 3 𝑡 𝑃  𝑤 où 𝑃  𝑤 = 𝑋 𝑤 𝑌 𝑤 𝑍 𝑤 1 𝑡

Chaque point de calibrage fournit une paire avec laquelle on peut 𝑢 𝑐𝑖 𝑣 𝑐𝑖 𝑠 𝑖 𝑡   𝑃  𝑤𝑖 écrire une équation 𝑢 𝑐𝑖 = 𝑚 1 𝑡 𝑃  𝑤𝑖   𝑚 3 𝑡 𝑃  𝑤𝑖          ,             𝑣 𝑐𝑖 = 𝑚 2 𝑡 𝑃  𝑤𝑖 𝑚 3 𝑡 𝑃  𝑤𝑖 qu’on peut transformer ainsi: 𝑢 𝑐𝑖 𝑚 3 𝑡 − 𝑚 1 𝑡 𝑃 𝑤𝑖 =0 𝑣 𝑐𝑖 𝑚 3 𝑡 − 𝑚 2 𝑡 𝑃 𝑤𝑖 =0 qui sont des équations de plans car, si on les développe, prennent la forme pour 𝑢 𝑐𝑖 avec une forme semblable pour 𝐴 𝑥 𝑤𝑖 +𝐵 𝑦 𝑤𝑖 +𝐶 𝑧 𝑤𝑖 +𝐷=0 𝑣 𝑐𝑖

Les inconnues à estimer sont les . 𝑚 𝑖𝑗 En retravaillant les équations pour et en fonction des on arrive à: 𝑢 𝑐𝑖 𝑣 𝑐𝑖 𝑚 𝑖𝑗 − 𝑃 𝑤𝑖 𝑡 𝑚 1 +0 𝑚 2 + 𝑢 𝑐𝑖 𝑃 𝑤𝑖 𝑡 𝑚 3 =0 0 𝑚 1 − 𝑃 𝑤𝑖 𝑡 𝑚 2 + 𝑣 𝑐𝑖 𝑃 𝑤𝑖 𝑡 𝑚 3 =0 pour chaque point de calibrage i. Si i= 1..n, on a “n” paires de correspondances “point image – point objet” et on peut donc écrire 2n équations sous forme matricielle: 𝑃 𝑤1 𝑡 0 4𝑥1 𝑡 ⋯  𝑃 𝑤𝑛 𝑡 0 4𝑥1 𝑡 0 4𝑥1 𝑡 𝑃 𝑤1 𝑡 ⋯ 0 4𝑥1 𝑡 𝑃 𝑤𝑛 𝑡 − 𝑢 𝑐1 𝑃 𝑤1 𝑡 − 𝑣 𝑐1 𝑃 𝑤1 𝑡 ⋯  − 𝑢 𝑐𝑛 𝑃 𝑤𝑛 𝑡 − 𝑣 𝑐𝑛 𝑃 𝑤𝑛 𝑡 2𝑛𝑥12 𝑚 11 𝑚 12 ⋯ 𝑚 33 𝑚 34 12𝑥1 =0

est la matrice écrite sous forme de vecteur. Ici, le vecteur 12 x 1: 𝑚 11 𝑚 12 ⋯ 𝑚 33 𝑚 34 12𝑥1 est la matrice écrite sous forme de vecteur. 𝑀 L’équation matricielle de la page précédente est un système d’équations linéaire homogène de forme qu’on résout avec une méthode comme la décomposition en valeurs singulières (“Singular Value Decomposition” - SVD) (nous verrons en quoi consiste la SVD plus tard). 𝑄 𝑚 = 0

Estimation des paramètres intrinsèques et extrinsèques à partir de la matrice caméra

Dans certaines applications (dont nous discuterons plus tard), la connaissance de la matrice est suffisante. 𝑀 Dans d’autres cas, on peut être intéressé à obtenir les paramètres intrinsèques et extrinsèques du modèle sténopé. Les étapes qui suivent montrent comment ces paramètres intrinsèques et extrinsèques peuvent être obtenus de la matrice . 𝑀

Avec ce qu’on a vu à la p. 12, on peut écrire: La première étape consiste à decomposer la matrice en deux sous matrices: 𝑀 𝑀 3𝑥4 = 𝐴 3𝑥3 𝑏 3𝑥1 3𝑥4 Avec ce qu’on a vu à la p. 12, on peut écrire: 𝑠 𝑎 1 𝑡 𝑎 2 𝑡 𝑎 3 𝑡 = 𝛼 𝜌 1 𝑡 −𝛼cot(𝜃) 𝜌 2 𝑡 + 𝑢 0 𝜌 3 𝑡 𝛽 sin(𝜃 𝜌 2 𝑡 + 𝑣 0 𝜌 3 𝑡 𝜌 3 𝑡 (1) facteur d’échelle

1- Calcul du facteur d’echelle s Avec la troisième ligne de l’equation (1) on a que : 𝑠 𝑎 3 𝑡 = 𝜌 3 𝑡 (2) et, en prenant le module de chaque côté de (2): ‖𝑠 𝑎 3 𝑡 ‖=‖ 𝜌 3 𝑡 ‖=1 (3) et donc : 𝒔= 𝜺 ‖ 𝒂 𝟑 ‖      𝒐ù   ( 𝜺=∓𝟏 )  (4)

En prenant le produit scalaire de la première ligne de (1) avec on a: 2- Calcul de 𝜌 3 Avec (4) et (2) : 𝜌 3 =𝑠 𝑎 3 (5) 3- Calcul de 𝑢 0 En prenant le produit scalaire de la première ligne de (1) avec on a: 𝜌 3 𝑠 𝑎 1 𝑡 𝜌 3 =𝛼 𝜌 1 𝑡 𝜌 3 −𝛼cot(𝜃) 𝜌 2 𝑡 𝜌 3 + 𝑢 0 𝜌 3 𝑡 𝜌 3 (6) Avec (6) et (5): 𝑢 0 = 𝑠 2 𝑎 1 𝑡 𝑎 3

En prenant le produit scalaire de la deuxième ligne de (1) avec on a: 4- Calcul de 𝑣 0 En prenant le produit scalaire de la deuxième ligne de (1) avec on a: 𝜌 3 𝑠 𝑎 2 𝑡 𝜌 3 = 𝛽 sin(𝜃 𝜌 2 𝑡 𝜌 3 + 𝑣 0 𝜌 3 𝑡 𝜌 3 (7) Avec (7) et (5): 𝑣 0 = 𝑠 2 𝑎 2 𝑡 𝑎 3 (8)

En développant (10) et en isolant a, on obtient: 5- Calcul de a En prenant le produit vectoriel de la première ligne de (1) avec et en utilisant une fois de plus (5) on a: 𝜌 3 𝑠 𝑎 1 × 𝜌 3 = 𝑠 2 𝑎 1 × 𝑎 3 =−𝛼 𝜌 2 −cot(𝜃) 𝜌 1 (9) Si on prend le module des vecteurs de chaque côté de l’égalité en (9) on a: 𝑠 2 ‖ 𝑎 1 × 𝑎 3 ‖=‖−𝛼 𝜌 2 −𝛼cot(𝜃) 𝜌 1 ‖= −𝛼 𝜌 2 −𝛼cot(𝜃) 𝜌 1 𝑡 −𝛼 𝜌 2 −𝛼cot(𝜃) 𝜌 1 1 2 (10) En développant (10) et en isolant a, on obtient: 𝛼= 𝑠 2 ‖ 𝑎 1 × 𝑎 3 ‖sin(𝜃 a est > 0 par définition (11)

En isolant b dans (13) on obtient: 6- Calcul de b En prenant le produit vectoriel de la deuxième ligne de (1) avec et en utilisant une fois de plus (5) on a: 𝜌 3 𝑠 2 𝑎 2 × 𝑎 3 = 𝛽 sin(𝜃 𝜌 2 + 𝑣 0 𝜌 3 × 𝜌 3 = 𝛽 sin(𝜃 𝜌 2 × 𝜌 3 + 𝑣 0 𝜌 3 × 𝜌 3 = 𝛽 sin(𝜃 𝜌 1 (12) Si on prend le module des vecteurs de chaque côté de l’égalité en (12) on a: 𝑠 2 ‖ 𝑎 2 × 𝑎 3 ‖= 𝛽 sin(𝜃 𝜌 1 𝑡 𝛽 sin(𝜃 𝜌 1 1 2 = ‖𝛽‖ sin(𝜃 (13) En isolant b dans (13) on obtient: 𝛽= 𝑠 2 ‖ 𝑎 2 × 𝑎 3 ‖sin(𝜃 b est > 0 par définition (14)

7- Calcul de q Pour calculer a et b de (11) et (14), il faut connaître q. En revenant à (1), on peut effectuer l’opération suivante: 𝑎 1 × 𝑎 3 𝑡 𝑎 2 × 𝑎 3 = −𝛼𝛽cot(𝜃 𝑠 4 sin(𝜃 (15) On peut aussi prendre le produit du module des deux vecteurs à gauche de (15): ‖ 𝑎 1 × 𝑎 3 ‖  ‖ 𝑎 2 × 𝑎 3 ‖= 𝛼𝛽 𝑠 4 sin(𝜃 2 (16)

Le rapport de (15) et (16) donne: 𝑎 1 × 𝑎 3 𝑡 𝑎 2 × 𝑎 3 ‖ 𝑎 1 × 𝑎 3 ‖  ‖ 𝑎 2 × 𝑎 3 ‖ =−cos(𝜃)   (17) On a donc pour q : 𝜃 = cos −1 − 𝑎 1 × 𝑎 3 𝑡 𝑎 2 × 𝑎 3 ‖ 𝑎 1 × 𝑎 3 ‖‖ 𝑎 2 × 𝑎 3 ‖ (18) Rappelons que q est très près de 90° pour les caméras numériques modernes.

Par une propriété de la matrice de rotation. 8- Calcul de 𝜌 1 Si on revient à (12): 𝛽 sin(𝜃 𝜌 1 = 𝑠 2 𝑎 2 × 𝑎 3 (12) On peut isoler 𝜌 1 𝜌 1 = 𝑠 2 sin(𝜃 𝛽 𝑎 2 × 𝑎 3 (19) 9- Calcul de 𝜌 2 𝜌 2 = 𝜌 3 × 𝜌 1 (20) Par une propriété de la matrice de rotation.

À cause de (4), il y a deux solutions possibles pour la matrice de rotation dépendant du signe de s. L’ambiguïté peut être levée en observant la géométrie du problème de formation d’image pendant la phase de calibrage en vérifiant la plausabilité de la solution par inspection.

10- Calcul des paramètres extrinsèques de translation En revenant à l’équation de projection de perspective établie à la p. 10: 𝑧 𝑝 𝑐 = 𝐾 0 𝑅 𝑡 − 𝑅 𝑡 𝑡 𝑃   𝑤𝑜𝑟𝑙𝑑 qu’on peut écrire plus simplement: 𝑧 𝑝 𝑐 = 𝐾 3𝑥3 0 3𝑥1       𝑡 𝑥   𝜌 3𝑥3   𝑡 𝑦       𝑡 𝑧 0 0 0 1 𝑃 𝑤 =𝑠 𝐴 𝑏 𝑃 𝑤 On a que: 𝐾 3𝑥3 𝑡 𝑥 𝑡 𝑦 𝑡 𝑧 =𝑠 𝑏 𝑡 𝑥 𝑡 𝑦 𝑡 𝑧 =𝑠 𝐾 −1 𝑏 et donc: (21)

En résumé Extrinsèques Intrinsèques 𝒔= 𝜺 ‖ 𝒂 𝟑 ‖ 𝒐ù ( 𝜺=∓𝟏 ) 𝒔= 𝜺 ‖ 𝒂 𝟑 ‖      𝒐ù   ( 𝜺=∓𝟏 )  𝑣 0 = 𝑠 2 𝑎 2 𝑡 𝑎 3 𝜃 = cos −1 − 𝑎 1 × 𝑎 3 𝑡 𝑎 2 × 𝑎 3 ‖ 𝑎 1 × 𝑎 3 ‖‖ 𝑎 2 × 𝑎 3 ‖ 𝛼= 𝑠 2 ‖ 𝑎 1 × 𝑎 3 ‖sin(𝜃 𝛽= 𝑠 2 ‖ 𝑎 2 × 𝑎 3 ‖sin(𝜃 𝜌 3 =𝑠 𝑎 3 𝜌 1 = 𝑠 2 sin(𝜃 𝛽 𝑎 2 × 𝑎 3 𝜌 2 = 𝜌 3 × 𝜌 1 𝑡 𝑥 𝑡 𝑦 𝑡 𝑧 =𝑠 𝐾 −1 𝑏 𝑢 0 = 𝑠 2 𝑎 1 𝑡 𝑎 3