Proportions, risques relatifs, odds ratio

Slides:



Advertisements
Présentations similaires

Advertisements


Bonne nutrition et sécurité alimentaire et meilleurs moyens d’existence pour les communautés agricoles dans terrains arides Pourquoi cette étude sur des.
ECO1 Introduction à l’économie
REVISION du COURS E = En- Ep = h
Compilation E. RAMAT
Mémoires résistives : Monte Carlo nouvel acte?
Les Moteurs ASynchrones
REGARDS CROISéS SUR LA PROPORTIONNALITE
Fabian Bergès, Elise Maigné, Sylvette Monier-Dilhan et Thomas Poméon
Équipe MAREL novembre 2016 Modelica Un langage pour modéliser et simuler des systèmes dynamiques hybrides
COUR DE TRAITEMENT NUMERIQUE DES SIGNAUX
La suite bureautique OpenOffice.org
Les descentes de charge
African Economic Conference (AEC)
Notions d’éclairagisme pour les ouvrages intérieurs
RES 203 Applications Internet
Un ébranlement sur une corde se propage à la vitesse c=1 cm/s
Projet GEPET-EAU Etude de la résilience et optimisation de la gestion des réseaux de voies navigables dans un contexte de changement climatique.
Laboratoire de Structure du Nucléon
2. Approbation de l’agenda 3. Compte-rendu de la dernière rencontre
Cu2+(aq) Doser ?? Doser une espèce chimique… …efficacement…
La procédure PASAPAS et les procédures utilisateurs
Agrégation SII OPTION ingénierie des Constructions
BASE DE SONDAGE PRINCIPALE (BSP) LES STATISTIQUES AGRICOLES
RELATIONS BIOMÈTRIQUES D'UN CYPRINIDAE ENDÉMIQUE,
FRACTIONS ET NOMBRES DECIMAUX
Microcontrôleur.
mathématiques et physique-chimie au cycle 3
Electrochimie: réactions d’oxydo-réduction
ELECTROTECHNIQUE CM: 10h; TD: 20h; TP: 30h
La masse volumique.
TD 8 – Chaînes de montagnes - Tectonique des plaques

Cinquième Chapitre 2: Solides
TD 7- Réactions minéralogiques et bilans chimiques
Information, Calcul, Communication
Dimitri Zuchowski et Marc-Élie Lapointe
JTED, Novembre 2016, Toulouse
La révolution numérique : comment s’emparer des opportunités sans négliger les dangers ? Virginie Fauvel, Membre du Comité Exécutif d’Allianz France en.
COURS D’INFORMATIQUE INDUSTRIELLE www. massaleidamagoe2015
A M E J Association des Médecins Experts Judiciaires
Module 1: Cinématique SPH3U4C.
ECO1 Introduction à l’économie
Stratégies en matière de plan de sondage et d’échantillonnage
Etalonnage d’une caméra (on parle aussi de calibrage)
Sciences de l’Ingénieur
Objectif : remplacer les tâches Répétitives Pénibles Complexes
PILES ET ACCUMULATEURS - RÉACTIONS D’OXYDORÉDUCTION
Introduction à l’économie Amphi 1 Qu’est ce que l’économie ?
Principe de fonctionnement d'une cellule photo voltaïque
Thème 3 : Défis du XXIe siècle..
Utilisez les flèches de droite et de gauche pour naviguer.
5.1 Systèmes d’équations linéaires
Optique géométrique Laboratoires de physique de 1ère année
Le projet interdisciplinaire CeraR : Céramique archéologique avec R
Les outils Word Les outils Word constituent la base des outils utilisés dans la presque totalité des logiciels applicatifs. Reconnaitre les icones des.
Télémédecine et Diabète de type 1 Le systeme Diabéo
VICTOR HUGO et la SRO Un partenariat ville-hopital en rhumatologie
Maladie d’Ollier / Maffucci Projet de dépistage des gliomes
Les plateformes de simulation au service des GHT et des territoires
Les pratiques en classe, notamment avec le numérique et le jeu.
Le dépistage de la déficience cognitive chez les adultes plus âgés: Recommandations 2015 Groupe d’étude canadien sur les soins de santé préventifs (GECSSP)
Les réformes de la formulation budgétaire en Ouganda
Préparation à l’examen
Une introduction à la démographie (L'étude de la population)
Travaux dirigés d’ Atomistique
Le premier principe de la thermodynamique
Thème 1 : Ondes et Matière.
Transcription de la présentation:

Proportions, risques relatifs, odds ratio La statistique, ou résumer les données de manière pertinente

Intro : Problématique La réalité est trop complexe pour qu’on la décrive Simplification sous forme de variable Les observations restent trop nombreuses

résumé numérique des observations d’un échantillon ou d’une population Intro : Solution Statistique résumé numérique des observations d’un échantillon ou d’une population C’est une projection Un angle de vue unique

Intro : De l’utilité de la stéréoscopie !

Intro : Problème de la statistique On perd de l’information Notre esprit à tendance à combler les vides Risque de mauvaise interprétation La plausibilité nous aide parfois à critiquer Critiquer tout résultat qui paraît aberrant

Intro : Problème de la statistique La perspective trompeuse redresse la réalité invraisemblable Elle semble aller Très bien Cette tour

Solution : multiplier les angles de vue ! Multiplier les statistiques Même dans un essai clinique confirmatoire Mais ne pas faire passer ça pour une analyse principale

Intro : IMC dans un service de nutrition IMC moyen = 21,8 Le patient « moyen » va bien ? 70% aux alentours d’un IMC=14 30% aux alentours d’un IMC=40 Aides : Écart type Moyenne ± écart type : 21,8 ± 12

Plan Introduction Proportions : Numérateur & dénominateur Incidence ratio & risques relatifs Odds ratio, RRR, RAR Application à un cas réel

2. Proportion : définition Un pourcentage exprime généralement une proportion Le signe % se lit comme « centième » Une proportion est comprise entre 0 et 1 Calculé comme un rapport : 𝑛𝑢𝑚é𝑟𝑎𝑡𝑒𝑢𝑟 𝑑é𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑢𝑟 Dénominateur ≥ numérateur Numérateur et dénominateur positifs

2. Proportion : règle d’or Le numérateur est toujours un sous-population du dénominateur Tout sujet rentrant dans le numérateur doit apparaître au dénominateur Proportion de diabétiques parmi les femmes 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑓𝑒𝑚𝑚𝑒𝑠 𝑑𝑖𝑎𝑏é𝑡𝑖𝑞𝑢𝑒𝑠 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑓𝑒𝑚𝑚𝑒𝑠 Apparté : Certains pourcentages ne sont pas des proportions ! Super promotion : +200% de produit gratuit !

𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑓𝑒𝑚𝑚𝑒𝑠 𝑑𝑖𝑎𝑏é𝑡𝑖𝑞𝑢𝑒𝑠 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑓𝑒𝑚𝑚𝑒𝑠 2. Autres formulations 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑓𝑒𝑚𝑚𝑒𝑠 𝑑𝑖𝑎𝑏é𝑡𝑖𝑞𝑢𝑒𝑠 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑓𝑒𝑚𝑚𝑒𝑠 Prévalence du diabète chez la femme Proportion de diabétiques parmi les femmes Probabilité qu’une femme tirée au sort soit diabétique Proba(d’être diabétique sachant qu’on est une femme) Proba(diabète=1 / sexe=femme)

2. Quel dénominateur ? Cohorte E3N : Cohorte de femmes à la MGEN Risque de développer un diabète sur 15 ans Initialement : aucun diabète Pas de diabète Diabète Total Corpulence basse ou normale 74764 1984 76748 Corpulence élevée 12040 454 12494 86804 2438 89242 3 dénominateurs : Total des lignes (-> pourcentages en ligne) Total des colonnes (-> pourcentages en colonnes) Total général (-> pourcentage global)

2. Quel dénominateur ? Total lignes Pas de diabète Diabète Total Corpulence basse ou normale 97,4% 2,6% 100% Corpulence élevée 96,4% 3,6% 97,3% 2,7% Perspective : Obésité comme facteur de risque du diabète (objectif de l’E3N) Le diabète est une maladie à haute incidence, dans les deux groupes de corpulences !

2. Quel dénominateur ? Total colonnes Répartition de la corpulence par statut diabétique Pas de diabète Diabète Total Corpulence basse ou normale 86% 81% Corpulence élevée 14% 19% 100% Perspective : Problème de l’obésité (prévention secondaire) dans la sous-population des diabétiques Le diabète est-il un vrai problème ? On ne peut pas y répondre sur ce tableau L’obésité est-elle fréquente ? Oui, même chez les non diabétiques !

2. Quel dénominateur ? Total général Répartition du diabète et de la corpulence dans l’ensemble de l’échantillon Pas de diabète Diabète Total Corpulence basse ou normale 83,8% 2,2% 86% Corpulence élevée 13,5% 0,5% 14% 97,3% 2,7% 100% Très difficile de voir l’association entre diabète et obésité dans ce tableau. On doit faire de tête (0,5 / 14) / (2,2 / 86) Représentation neutre, sans perte d’information, permettant de recalculer les deux autres tableaux

2. Comment faire ? Rédaction d’un article : Lecture d’un article : Réfléchir au dénominateur le plus pertinent Lecture d’un article : Identifier le dénominateur que les auteurs ont employé En s’aidant des totaux s’ils sont affichés En recalculant les totaux en ligne, colonne et en recalculant le total général En s’aidant de la légende du tableau Critiquer le choix du dénominateur

3. Que peut-on calculer sur le premier tableau ? Taux de diabétiques par corpulence Pas de diabète Diabète Total Corpulence basse ou normale 97,4% (74764) 2,6% (1984) 100% (76748) Corpulence élevée 96,4% 3,6% 100% 97,3% 2,7% Taux d’incidence du diabète chez les peu corpulents = 2,6% Taux d’incidence du diabète chez les plus corpulents = 3,6% Mesure d’association entre exposition et maladie ? Incidence ratio du diabète entre les plus corpulents et les moins corpulents = 3,6/2,6 = 1,4 Si on divisait artificiellement le nombre de peu corpulents dans cette étude : On ne changerait pas les 4 cases oranges du tableau Il s’agirait d’une étude exposé/non-exposé Ça permettrait de suivre moins de sujets

3. Que peut-on calculer sur le second tableau ? Répartition de la corpulence par statut diabétique Pas de diabète Diabète Total Corpulence basse ou normale 86,1% 81,4% 86,0% Corpulence élevée 13,9% 18,6% 14,0% 100% Les cases oranges sont inchangées par la multiplication artificielle du nombre de diabétiques (étude cas témoin) Mesure d’association entre exposition et maladie ? Rapport des cotes (odds ratio) Cote : comme au pari : 1/10 devient 1 contre 9 (=0,11) 9/10 devient 9 contre 1 (=9) Cote de la corpulence élevée chez les diabétiques : 18,6 / 81,4 = 22,9% Cote de la corpulence élevée chez les non diabétiques : 13.9 / 86.1 = 16,1% Rapport des cotes de la corpulence entre diabétiques et non diabétiques : OR = 22,9% / 16,1% = 1,42 ≈𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜

4. Odds ratio : propriétés géniales ! Répartition du diabète et de la corpulence dans l’ensemble de l’échantillon Pas malades Malades Total Non exposés 83,8% (a) 2,2% (b) 86% Exposés 13,5% (c) 0,5% (d) 14% 97,3% 2,7% 100% Odds ratio de la maladie sur l’exposition = 𝑑/𝑐 𝑏/𝑎 = 𝑎𝑑 𝑏𝑐 =OR(M et E) Odds ratio de l’exposition sur la maladie = 𝑑/𝑏 𝑐/𝑎 = 𝑎𝑑 𝑏𝑐 =OR(M et E) Odds ratio entre M et E = 𝑝𝑟𝑜𝑑𝑢𝑖𝑡 𝑑𝑒𝑠 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑠 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑒) 𝑝𝑟𝑜𝑑𝑢𝑖𝑡𝑠 𝑑𝑒𝑠 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑠 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒) Insensible à la disproportionnalité engendrée par une étude cas-témoin ou exposé/non-exposé. Si la maladie est rare : OR ≈ risque relatif de la maladie pour les exposés par rapport aux non exposés

4. Proportion, RR et OR Problème à une variable (diabète) Proportion de diabétiques dans la cohorte : 2,7% Cote des diabétiques : 2,7%/97,3% = 0,028 Problème à deux variables (diabète+corpulence) Risque relatif (préféré mais incalculable dans un cas-témoin) Odds ratio Réduction/augmentation absolue du risque Réduction/augmentation relative du risque Problème à trois variables : Comparer les RR entre deux sous groupes ?

5. Partons d’un cas réel Pemphigus incident, échantillon exhaustif sur 13 départements Comparaison historique aux données de mortalité générale de l’INSEE (standardisation indirecte) On calcule le risque d’une « population INSEE » qui aurait la même pyramide des âges que notre échantillon On veut savoir si le pemphigus a « plus d’effet » chez les vieux que chez les moins vieux

5. Résultats Tranche d’âge Taux de mortalité observé Taux de mortalité attendu selon l’INSEE = risque pop générale Taux de mortalité observé Augmentation absolue du risque Augmentation relative du risque Risque relatif (SMR) Odds ratio 60-74 ans 11,6% 23,7% +12,1% +105% 2,05 2,38 75-89 ans 46% 81,8% +35,1% +76% 1,76 5,3 Rapport des effets ×2,9 ×0,72 ×0,86 ×2,2 Augmentation relative de l’effet +190% -28% -14% +223% Pour les >= 90 ans : 80% -> 100% => RR=1,25 et OR=inf Combien faut-il de statistiques pour voir tout le tableau ? Notre imagination complète-t-elle fidèlement le tableau ?

5. Classiquement On dit que le RR est plus facile à comprendre que l’odds ratio Le RR n’est facile à comprendre que lorsque le risque est assez faible L’OR de survie est l’inverse de l’OR de mortalité Mortalité : 80% -> 90% RR=1,12 Survie : 20% -> 10% RR=0,50 Cote de DC : 4 contre 1 -> 9 contre 1 (OR = 2,25) Cote de survie : 1 contre 4 -> 1 contre 9 (OR=0,45)

5. Problème d’un rapport

5. Raisonner en relatif ou absolu ? Les RR et OR ne quantifient pas les problèmes de santé publique On recherchera des risques absolus et différence absolues de risque Ils sont intéressants physiopathologiquement Épidémio analytique, essais cliniques, etc. Ou si on les combine à d’autres sources de données pour recalculer les risques absolus