1. La moyenne arithmétique ( )

Slides:



Advertisements
Présentations similaires
Tests relatifs aux variables qualitatives: Tests du Chi-deux.
Advertisements

LE CHOIX DE LA FORMULE  Reprise du cours du 09 au 12 décembre (GR 1 à 5, même si redites) o Question : vitesse moyenne du cycliste A sur l’ensemble de.
Notions de statistiques et d’analyse de données Master 1 MGS – Sarah MISCHLER –
1 Correction d’exercices : ° soit inclus dans le PowerPoint du cours ; ° soit exécutés au cours (avec corrigés plus complets sur le site).
Cours 7 : reprise Taux de chômage : formule : autre nom jamais utilisé : la % de chômeurs dans la population active seule information à retenir du bloc.
Moyenne  Conclusions et résumé o 2 idées : la même chose à tout le monde & vérification o 9 formules (du moins pour nous) : 3 familles : arithmétique,
Du chapitre 1 au chapitre 2 1. Les graphiques : introduction (p.19)  Pour prendre possession des données o des chiffres dans un tableau, c’est bien o.
Du chapitre 1 au chapitre 2 1. Les graphiques : introduction (p.15)  Pour prendre possession des données o des chiffres dans un tableau, c’est bien o.
« Fais travailler ton voile ! » Intérêt d’un événement portant sur les témoignages de sœurs travaillant avec le voile Résultats du sondage 2014.
« Objectifs BAC » : Savoir différencier les tables de mobilité brute avec les tables de destinée et les tables de recrutement Savoir lire une table de.
Chapitre 4: Variation dans le temps  Les données : audience totale en milliers (tableau 4.1, p. 47, extrait) o Origine : enquête sur les habitudes d’écoute.
Organisation, gestion de données Les connaissances que l'enseignant doit maîtriser à son niveau Présentation réalisée à partir de l'ouvrage de Roland Charnay.
Le budget des Français pour les loisirs – Vague 2 Août 2013 Le Sofinscope – Baromètre réalisé par OpinionWay pour SOFINCO Le budget des Français pour les.
Notions de statistiques et d’analyse de données
Et maintenant, le mode : fastoche !
Les associations en Auvergne – Rhône-Alpes
Les titres dans le mémoire
Suites ordonnées ou mettre de l’ordre
Chapitre 4: Variation dans le temps
Chapitre 4: Variation dans le temps
Tableau à double entrée
Chapitre 1 Généralités sur les données
COMPLÉMENTS SUR LES MARÉES
OUTILS D’AIDES AUX SYNDICATS
L’opération de multiplication
Comprendre, classer et analyser les problèmes multiplicatifs
Les distributions en classes
Chapitre 4: Variation dans le temps
Jeudi 9 mars 2017 Christall Ecole
La virginité ... c'est comme une mouche sur le dos d'une vache,
Taux d’intérêt Module 1 – Complément.
Chapitre 1 Généralités sur les données
Pédiatrie – année 2015 Nous avons défini comme pédiatriques les malades dont l’âge est inférieur à 16 ans. Selon ce critère, depuis le début 704 patients.
Choix de séquences mathématiques
Reprise du cours ( ) Séance « questions/réponses » :
Reprise du cours ( ) Aujourd’hui :
Chapitre 4: Variation dans le temps
Une grande partie des données que nous serons amenés cette année à étudier sera exprimée en unités monétaires. Or, nous le savons, il existe un phénomène.
Mesures de Variation, Coefficient Multiplicateur, Taux de Variation
Analyse en Composantes Principales A.C.P. M. Rehailia Laboratoire de Mathématiques de l’Université de Saint Etienne (LaMUSE).
Lecture et interprétation des Taux de Croissance Moyens
Rapports et proportions
Précision d'une mesure et chiffres significatifs
Chapitre 1 Généralités sur les données
La virginité ...c'est comme une mouche sur
Plans d’experiences : plans de melanges
Exploitation de mesures scientifiques.
MOYENNE, MEDIANE et ECART TYPE d’une série statistique
Week 1 Lecture 1 Introduction à R L3PRO 2017.
La méthode du simplexe. 1) Algorithme du simplexe  Cet algorithme permet de déterminer la solution optimale, si elle existe, d’un problème de programmation.
ACP Analyse en Composantes Principales
Statistiques. Moyenne, Moyenne pondérée, Tableur et graphiques.
Calculs des incertitudes Lundi 30 Avril 2018 Master de Management de la Qualité, de la Sécurité et de l’Environnement.
Programme financé par l’Union européenne
Rappel (3): les étapes des tests statistiques
Test 2.
Phrases du jour Défilement manuel.
Calcul : addition, soustraction, multiplication, division
Position, dispersion, forme
Les calculs usuels sur les prix
La démarche scientifique
Conception cartographique
1Dans le tableau, la pauvreté correspond au Seuil de faible revenu (SFR). Le SFR correspond au niveau de revenu auquel une famille peut vivre des circonstances.
Impact Evaluation 4 Peace March 2014, Lisbon, Portugal 1 Echantillonage pour une Evaluation d’Impact Latin America and the Caribbean’s Citizen Security.
Evaluation de Maths 2 1 CM1 1 Place ces nombres dans le tableau
Multiplier par des multiples de 10, de 100
Distinguer origine et destinée
Séquence sur la division
STATISTIQUE INFERENTIELLE LES TESTS STATISTIQUES.
Problèmes multiplicatifs
Transcription de la présentation:

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Données : 5 femmes ont été interrogées à propos du nombre d’enfant(s) qu’elles ont Combien de femmes interrogées ? Données groupées ou pas ? La question : nombre moyen d’enfants par femme ( ) ? Calcul : au total, combien d’enfants ? 20 = 2 + 3 + 8 + 4 + 3 calcul de la moyenne : aucune surprise ! femme (i) enfants/femme (xi) 1 2 3 8 4 5

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Calcul : 2 idées à retenir pour la suite : répartition équitable entre les « i » sous observation : diviser 20 par 5 = répartir équitablement les enfants entre les femmes vérification : si pour les 5 femmes, au total, cela fait 5 * 4 = 20 enfants total de 20 trouvé avec les données observées respecté  OK Formule (dite « simple ») : si les 5 observations : si « n » observations : FORMULE Générale

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs : 20 femmes interrogées (cf. tableau 3.1, p. 28) Lecture des données : 1re ligne : pour 3 femmes, la descendance est de 0 (pas d’enfant) 2e ligne : pour 6 femmes, on sait que la variable vaut 3 enfants 3e ligne : 35% des valeurs observées = 4 enfants Question : quelle est la descendance moyenne parmi les 20 femmes ? Formule simple : 1re parenthèse = la 1re ligne : 3 femmes sans enfant 2e parenthèse = la 2e ligne : 6 femmes avec 3 enfants etc. p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé ! p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !

1. La moyenne arithmétique ( ) Formule pondérée par les effectifs (cf. tableau 3.1) Interprétation : en moyenne, chacune des 20 femmes a 3,5 enfants/femme (fiction de l’égalité) sens concret <> sens mathématique si ailleurs, la moyenne = 2,8 efts/f, c’est moins que dans le cas calculé !

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences p «  xp » « np » « fp » 1 3 0,15 2 6 0,30 4 7 0,35 0,20 Total - 20 1,00 ou 100%

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

1. La moyenne arithmétique ( ) Formule pondérée par les fréquences (cf. tableau 3.1) Simples, pondérées par les np ou les fp : 3 formules « équivalentes » il n’y a pas une bonne et des mauvaises avec les mêmes données donnent les mêmes résultats (3,5 e/f dans l’exemple) à choisir selon les circonstances : si 100.000 observations et formule simple… si crainte des effets d’arrondis, plutôt pondérée par les effectifs que par les fréquences

2. Un 2e type de moyenne

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/192 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 le coefficient multiplicateur de 1991 (CM91) = 1,10 : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 1,10 = le coefficient multiplicateur de 1991 (CM91) : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 1,10 = le coefficient multiplicateur de 1991 (CM91) : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2, p. 29) le 1er janvier de chaque année à 0 heure, décompte de la population entre le 01/01/91 et le 01/01/92, l’année 1991 s’écoule et… la population passe de 1.000 à 1.100 la population a été multipliée par 1,10 : 1.100/1.000 = 1,10 1,10 = le coefficient multiplicateur de 1991 (CM91) : 1.000 * 1,10 = 1.100 Même procédure pour trouver CM92 et CM93 Questions ? Date Population Année (i) CMi (xi) 1/1/91 1.000 1991 1,10 (=1.100/1.000) 1/1/92 1.100 1992 1,20 (=1.320/1.100) 1/1/93 1.320 1993 1,05 (=1.386/1.320) 1/1/94 1.386

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/93 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/94 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/94 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) le CM est connu pour 3 années (= la variable est connue pour 3 « i ») question : que vaut le CM moyen ? avant, manipulations de base avec le CM : 1.100 = 1.000 * 1,10 P1/1/92 = P1/1/91 * CM91 P1/1/93 = P1/1/92 * CM92 = P1/1/91 * CM91 * CM92 P1/1/94 = P1/1/93 * CM93 = P1/1/91 * CM91 * CM92 * CM93 = P1/1/91 * x1 * x2 * x3 = 1.000 * 1,10 * 1,20 * 1,05 = 1.386 Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 1re idée : la formule arithmétique . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1167 * 1,1167 * 1,1167) = 1.000 * 1,11673 = 1.392,5 ≠ 1.386  PROBLÈME ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on ne retrouve pas les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = 1.000 * 1,11493 = 1.365,8 ≠ 1.386 par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = 1.000 * 1,11493 = 1.365,8 ≠ 1.386 par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = 1.000 * 1,11493 = 1.365,8 ≠ 1.386 par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = 1.000 * 1,11493 = 1.365,8 ≠ 1.386 par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = 1.000 * 1,11493 = 1.385,8 ≠ 1.386 par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.2) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) . Ne pas oublier de vérifier : si les xi sont replacer par , la population doit passer de 1.000 à 1.386 en 3 ans ! 1.000 * (1,1149 * 1,1149 * 1,1149) = 1.000 * 1,11493 = 1.365,8 ≠ 1.386 par effet d’arrondis ! Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320) Si chaque année le même CM, on retrouve BIEN les données de départ !

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Les données : évolution de la population d’une localité (cf. tableau 3.) Calcul du CM moyen 2e idée : la formule géométrique (que l’on peut démontrer) Généralisation : avec Année (i) CMi (xi) 1991 1,10 (=1.100/1.000) 1992 1,20 (=1.320/1.100) 1993 1,05 (=1.386/1.320)

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. ! p xp np fp 1 1,012 0,10 2 1,018 3 1,020 4 0,40 1,023 0,30 5 1,030 Total - 10 1,00 ou 100%

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formules pondérées (données : tableau 3.3.a, p. 30) Simple, pondérée par np ou fp : 3 formules équivalentes, etc. !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

2. Un 2e type de moyenne Formule géométrique : un raccourci sympa ! (p. 31) Calcul franchement simplifié ! Une 3e type de moyenne !

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Tous les enfants d’un village ont été interrogés : combien d’efts a ta maman ? Données (tableau 3.3.b) Unités sous observation ? À qui a-t-on poser des questions ? Variable sous observation ? Quelle question posée ? Données groupées ou pas ? Titres des colonnes : np, p et xp Quel est le nombre moyen d’enfants par femme ? (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Quel est le nombre moyen d’enfants par femme ? On peut démontrer que : Vérification : combien de mères faut-il pour que : 6 enfants disent « maman a 2 enfants » ? 3 mères car 6/2 = 3 (rappel : tous les enfants…) 12 enfants disent « maman a 3 enfants » ? 4 mères car 12/3 = 4 4 enfants disent « maman a 4 enfants » ? 1 mère car 4/4 = 1 finalement : 8 mères doivent se partager équitablement 22 enfants et donc : (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat ! (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total 22

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat ! (p) enfants/femme (xp) enfants (np) 1 2 6 3 12 4 total SO 22

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

3. Un 3e type de moyenne Formules harmoniques pondérée par les effectifs : pondérée par les fréquences : simple (une rareté…) : 3 formules équivalentes : avec les mêmes données, même résultat !

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

Très important dans ce cours ! LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Très important dans ce cours ! Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne : 3 résultats différents Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Données : 5 observations pour une variable quantitative X quelconque 3 formules simples de la moyenne Les questions : face à un cas précis, face à un cas concret, quelle famille de formules choisir : arithmétique, géométrique, harmonique… ? version simple ou pondérée ? «  i » « xi » 1 2 3 4 5 Famille En extension analytique Arithmétique Géométrique Harmonique

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule simple ou pondérée ? 1re solution : données individuelles ou groupées ? Si individuelles et peu nombreuses  SIMPLE Si groupées, distribuées  PONDÉRÉE 2e solution : notions de « poids » d’une ligne dans un tableau définition : nombre d’individu(s) pour lesquel(s) la valeur est d’application exemples : Exercices : tableaux 3.2, p. 29 & 3.3.b, p.31 Exemple 1 Exemple 2 Chaque ligne pèse 1 « i » Ligne 1 : 20 « i » ; ligne 2 : 13 « i »… Règle : si même poids pour toutes les lignes, formule simple ; sinon, pondérée Même poids : formule simple Poids différents : formule pondérée « i » « xi » 1 2 3 p «  xp » « np » 1 20 2 13 3

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique, géométrique ou harmonique ? Formule géométrique : 2 conditions simultanées : coefficient multiplicateur analyse diachronique (à travers le temps) + vérification, ce qui est toujours d’application… Plus difficile : si pas géométrique, choix entre arithmétique et harmonique (du moins pour nous)

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE grandeur/caractéristique dont on cherche la moyenne truc : la descendance moyenne (ou moyenne des descendances) 2e élément : les UNITÉS de mesure de la variable (UMV) enfant(s) par femme = eft / f truc : c’est forcément un rapport, une division = qqch / qqch d’autre 3e élément : les INDIVIDUS sous observation (ou « i ») les personnes ou les choses pour lesquelles on connait la variable truc : c’est forcément le numérateur ou le dénominateur des UMV

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV  arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV  harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f)  arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f)  harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f)  arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f)  harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f)  arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f)  harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f)  arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f)  harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)

LE CHOIX DE LA FORMULE Formule arithmétique ou harmonique (suite) ? Utilisation dans des circonstances voisines (p. 32) Pour choisir, 3 éléments à identifier et recours à une règle 1er élément : la VARIABLE 2e élément : les UNITÉS de mesure de la variable (UMV) 3e élément : les INDIVIDUS sous observation (ou « i ») la règle : si « i » au dénominateur des UMV (eft/f)  arithmétique cf. 1er cas en p. 32, où « i » = femmes si « i » au numérateur des UMV (eft/f)  harmonique cf. 2e cas en p. 32, où « i » = enfants Exercice 3.20 (venant d’un examen passé)

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique Vitesse Temps 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Données : « il a d’abord roulé à du 35 km/h pendant 3 heures… » Si nécessaire et même si pas demandé, transformer les données en un tableau Titre des colonnes : i, p, xi, np, xp… ? Données groupées ou pas ? Lire une donnée : pour 3 heures, on sait que la vitesse est de 35 km/h Choix de la famille de formules : coefficient multiplicateur (CM) & diachronique ? Non, pas CM, même si diachronique  pas formule géométrique ! et donc : hésitation entre arithmétique et harmonique p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

LE CHOIX DE LA FORMULE Exercice 3.20, cycliste A (p. 45) Question : vitesse moyenne du cycliste A sur l’ensemble de son parcours ? Pas géométrique  arithmétique ou harmonique (du moins pour nous) : variable : nom sur lequel porte l’adjectif moyen(ne) = la vitesse UMV : obligatoirement un rapport = des kilomètre par heure = km/h « i » : obligatoirement le numér. ou le déno. des UMV = des heures « i » = heures = le dénominateur des UMV (km/h)  arithmétique Pondérée ou pas ? poids de la 1re ligne en nombre d’« i » ? poids de la 2e ligne en nombre d’« i » ? poids différents  formule pondérée Retour à la lecture des données : pour 3 heures, on sait que la vitesse est de 35 km/h pour 3 « i », on sait que la valeur de la variable est de 35 km/h p Vitesse xp Temps np 1 25 2,5 2 35 3 40 1,5

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé 2 idées : la même chose à tout le monde & vérification 9 formules (du moins pour nous) : 3 familles : arithmétique, géométrique & harmonique 3 versions : simple, pondérée par np & pondérée par les fp Règle de choix : application stricte et systématique géométrique : si CM et analyse diachronique si pas géométrique, arithmétique ou harmonique : variable : adjectif « moyen(ne) » UMV : un rapport (a/b) « i » : numérateur ou dénominateur des UMV règle : si « i » au numérateur des UMV (a dans a/b) : harmonique si « i » au dénominateur des UMV (b dans a/b) : arithmétique simple ou pondérée ? Poids des lignes du tableau : identiques  simple Exercices à (re)faire : ● « absolument »  : 3.4 ; 3.6 ; 3.18 ; 3.20 ● utilement : 3.1 ; 3.2 ; 3.7 ; 3.8 (attention parfois calculs très longs)

Moyenne Conclusions et résumé Remarques finales Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats

Moyenne Conclusions et résumé Remarques finales Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats

Moyenne Conclusions et résumé Remarques finales Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats

Moyenne Conclusions et résumé Remarques finales Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats

Moyenne Conclusions et résumé Remarques finales Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats

Moyenne Conclusions et résumé Remarques finales Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats

Moyenne Conclusions et résumé Remarques finales Si calcul de la moyenne pour : l’âge et âge connu pour des individus le poids et poids connu pour des individus la descendance et descendance connue pour des individus les revenus et revenus connus pour des individus etc… Doute ? Non : famille arithmétique Après quelques exercices, facile de détecter les cas plus délicats Au boulot !