Développement de Calorimètres Métalliques Magnétiques pour la Spectrométrie β Présentation du laboratoire... Motivations L’état de l’art en Spectrométrie Bêta Le principe physique des Calorimètres Métalliques Magnétiques (CMM) Les études de faisabilité Premiers résultats et perspectives 1
Présentation du laboratoire Commissariat à l’Energie Atomique et aux Energies Alternatives Laboratoire National de Métrologie et d’Essais laboratoire national de métrologie des rayonnements ionisants maintenir et développer les références des unités de l’activité (Bq) et de la dose (Gy) Méthodes de mesure (primaire et secondaire) Préparation de sources radioactives Calculs et simulations Monte Carlo Mesure et Evaluation des données Nucléaires et Atomiques Prestations d’étalonnage
Besoins de connaissance de spectres Bêta Motivations Besoins de connaissance de spectres Bêta En métrologie calcul de rendement ● forme ● Emoy =85 keV ● Emax=294 keV 99Tc Domaine industriel chaleur résiduelle des réacteurs... Domaine médical doses induites en curiethérapie... En physique nucléaire améliorer la théorie...
L’état de l’art en Spectrométrie Bêta Présentation du laboratoire... Motivations L’état de l’art en Spectrométrie Bêta Le principe physique des Calorimètres Métalliques Magnétiques Les études de faisabilité Premiers résultats et perspectives
Etat de l’art de l’évaluation théorique des spectres β (1/5) Les approximations dans le calcul du spectre (1/2) facteur statistique * ... interaction entre particules ponctuelles spectre indépendant des fonctions d’onde des noyaux simplification de la désintégration à 3 corps → symétrie sphérique → ondes planes : Or, pour la décroissance β, D’où, 5
Etat de l’art de l’évaluation théorique des spectres β (2/5) Les différentes types de transitions Bêta Ordre 0 : moment angulaire orbital J(e-/) nul transitions permises Ordre > 0 : J(e-/)0 transitions interdites 6
Etat de l’art de l’évaluation théorique des spectres β (3/5) Les approximations dans le calcul du spectre (2/2) facteur statistique * fonction de Fermi (influence du champ coulombien) analytique : charge considérée comme ponctuelle ou numérique : interpolation à partir de résultats tabulés Les approximations rendent les calculs insuffisants.
Etat de l’art de l’évaluation théorique des spectres β (4/5) L’ajustement théorie / mesure facteur statistique * fonction de Fermi * facteur de forme corriger des approximations faites dans le calcul de spectre, et essayer d’étendre les calculs aux transitions interdites
Etat de l’art de l’évaluation théorique des spectres β (5/5) Influence des différents facteurs sur la forme d’un spectre β- (85Kr) Probabilité Énergie Emax On a besoin de données expérimentales correctes.
Etat de l’art des dispositifs de mesure de spectres β scintillateur liquide semi-conducteur spectromètre magnétique ou électrostatique Calorimètres Métalliques Magnétiques rendement de détection dépend de la forme du spectre angle solide, zone morte angle solide angle 4π (proche de 100%) résolution en énergie qqs keV qqs 100 eV magnétique: qqs 10 à 100 eV (dépend de l’énergie) électrostatique: qqs eV qqs 10 à 100 eV autres réponse non linéaire facile à mettre en œuvre taux de comptage élevé faible gamme d’énergie difficile à mettre en œuvre source intense requise large gamme d’énergie taux de comptage faible cryogénie requise Une dizaine de facteurs de forme déterminés depuis 30 ans ! 10
Le principe physique des Calorimètres Métalliques Magnétiques Présentation du laboratoire... Motivations L’état de l’art en Spectrométrie Bêta Le principe physique des Calorimètres Métalliques Magnétiques Les études de faisabilité Premiers résultats et perspectives
Le principe physique des Calorimètres Métalliques Magnétiques (1/8) détection de l’énergie apportée par chaque particule émise sous forme d’une élévation de température géométrie 4π du détecteur → absorbeur source β émetteur d’électrons Au thermomètre paramagnétique → senseur AuEr Au couplage magnétique (direct ou transformateur de flux) lien thermique retour à l’équilibre SQUID magnétomètre x x bain thermique 15 mK 12
Le principe physique des Calorimètres Métalliques Magnétiques (2/8) ABSORBEUR métallique (Au) interaction particule/matière → transfert de l’énergie aux électrons de conduction → élévation de température avec C, capacité calorifique totale (absorbeur+senseur) Pourquoi les très basses températures (<100 mK) ? pour les métaux : limite fondamentale de la résolution en énergie : Absorbeur 63Ni (1,25 Bq) (bruit thermodynamique) dimensionnement : épaisseur suffisante pour arrêter tous les électrons dans la gamme d’énergie via simulation Monte Carlo 200 μm
Le principe physique des Calorimètres Métalliques Magnétiques (3/8) SENSEUR paramagnétique (AuEr) couplage thermique électrons de conduction/spins des ions erbium (~10 µs) → variation d’aimantation M en présence d’un champ magnétique B extérieur à l’équilibre thermique lors d’un transfert de chaleur Optimisation du rapport signal sur bruit : Cabsorbeur= Csenseur Variation d’aimantation mesurée via une variation de flux magnétique dans un SQUID
Le principe physique des Calorimètres Métalliques Magnétiques (5/8) SQUID Superconducting Quantum Interference Device On polarise le SQUID en courant La tension en sortie est une fonction périodique du flux, (de période Φ0=2,07 * 10-15 Tm2). Pour Ib>Ic, Jonction Josephson Boucle supraconductrice 25 μm avec Ic: Courant critique (donnée) Ib: Courant de polarisation Deux phrases sur principe.. Supraconducteur jonction josephson fleche flux Pour une réponse en tension linéaire avec le flux mesuré, on doit fixer un point de fonctionnement du SQUID... 15
Le principe physique des Calorimètres Métalliques Magnétiques (6/8) On utilise alors une électronique de contre-réaction négative qui maintient le flux magnétique constant dans le SQUID. Φ -Φ A B S O R E U S E N U R S Q U I D couplage δVs 16
variation d’aimantation → variation de flux Le principe physique des Calorimètres Métalliques Magnétiques (7/8) COUPLAGE MAGNETIQUE variation d’aimantation → variation de flux SENSEUR → SQUID absorbeur SQUID limites dimensions du senseur →dimensions de l’absorbeur →gamme d’énergie (Cabsorbeur=Csenseur) couplage direct thermo- mètre B 50 μm absorbeur SQUID couplage indirect thermo- mètre transformateur de flux B bobine de lecture bobine d’injection 17
Le principe physique des Calorimètres Métalliques Magnétiques (8/8) couplage magnétique indirect : bobine en forme de méandre bobine créatrice de champ magnétique extérieur SQUID bobine d’injection Courant, Iinjecté,« gelé » dans boucle supraconductrice (méandre) → Champ magnétique constant appliqué au senseur Adapter la taille du méandre à la taille du senseur senseur méandre et bobine de lecture Variation d’aimantation Courant Variation de flux méandre bobine d’injection 1 mm
L’état de l’art en Spectrométrie Bêta Présentation du laboratoire... Motivations L’état de l’art en Spectrométrie Bêta Le principe physique des Calorimètres Métalliques Magnétiques Les études de faisabilité Premiers résultats et perspectives
Les études de faisabilité 36Cl (2006, Heidelberg) 241Pu (2009, LNHB) Classe : 2nde interdite Emax= 708,6 keV Demi-vie: 301 000 ans Classe : 1ère interdite non unique Emax= 20,8 keV Demi-vie: 14,33 ans Couplage magnétique indirect via méandre Source extérieure : 57Co Couplage magnétique direct Source extérieure : 55Fe Résolution en énergie 750 eV à 122 keV Seuil de détection qqs keV Seuil de détection : 300 eV Résolution en énergie : 29 eV à 5,9 keV
L’état de l’art en Spectrométrie Bêta Présentation du laboratoire... Motivations L’état de l’art en Spectrométrie Bêta Le principe physique des Calorimètres Métalliques Magnétiques Les études de faisabilité Premiers résultats et perspectives
Caractérisation d’un senseur lu par un méandre (1/6) Schéma du montage Source : 55Fe r=2 mm A=52 kBq Blindage : Pb Rayons X : 6 keV Taux de comptage : 2,5 s-1 13 mm Collimateur : Pb ép.=1 mm r=300 μm Senseur : AuEr x(Er)=750 ppm ép.=3,3 μm +5 μm Au 1,5 mm Méandre A=1 mm2 bain thermique
Caractérisation d’un senseur lu par un méandre (2/6) Photos du montage (1/2) SQUID senseur, méandre lien thermique 1mm
Caractérisation d’un senseur lu par un méandre (3/6) Photos du montage (2/2) source de photons 55Fe collimateur +détection blindage supraconducteur en Plomb Cryostat (température de base : 10 mK)
Caractérisation d’un senseur lu par un méandre (4/6) Temps caractéristique de l’impulsion Temps de montée: τmontée ~10 μs Temps de descente: τdescente ~ 10 ms Iinjecté= 100 mA T=10,3 mK
Caractérisation d’un senseur lu par un méandre (5/6) L’aimantation du senseur : inverse de la température (en K-1) aimantation (en Φ0) Courbes d’aimantation en fonction de l’inverse de la température pour deux courants injectés différents inverse de la température (en K-1) aimantation (en Φ0) Courbes d’aimantation en fonction de l’inverse de la température : comparaison calcul/mesure Iinjecté = 100 mA Icalculé = 100 mA Icalculé = 40 mA Iinjecté = 100 mA Iinjecté = 30 mA Aimantation plus petite qu’attendue (facteur ~2) Hypothèses: 40mA circulant dans le méandre (problème dans le circuit antérieur au méandre) 100mA dans une partie du méandre (problème dans le circuit du méandre) 26
Caractérisation d’un senseur lu par un méandre (6/6) Sensibilité amplitude des impulsions de 6 keV mesurées en fonction de la température amplitude des impulsions (en μΦ0.eV-1) Icalculé = 40 mA Iinjecté = 100 mA température (en K) Impulsions plus petites qu’attendues (facteur ~3) Hypothèse: Seule une partie du senseur est sensible, Problème dans la circulation du courant au niveau du méandre ? 27
Perspectives Spectre du 63Ni (Emax=66,98 keV, transition permise) : mesure en cours → comparer avec théorie et donner un facteur de forme Spectre du 241Pu (Emax=20,8 keV, transition interdite ) → avec source implantée, comparer influence de la réalisation de la source → comparer avec théorie et donner un facteur de forme Spectre du 36Cl (Emax=708,6 keV, transition interdite) → adaptation du système de détection du fait du rayonnement de freinage → comparer avec théorie et donner un facteur de forme Evaluer les facteurs de forme pour les deux classes de transition Bêta Elargir la gamme d’énergie mesurable via les Calorimètres Métalliques Magnétiques Evaluer l’influence de la qualité de la source mesurée 28
Je vous remercie de votre attention 29