Eléments de la Théorie des Probabilités

Slides:



Advertisements
Présentations similaires
Seconde 8 Module 15 M. FELT 1. Module 15: Probabilité  Objectif:  Loi des grands nombres  Algorithmique 2.
Advertisements

Module 1 : Généralités sur les systèmes informatiques
PROBABILITES 1. Des Statistiques aux Probabilités D1. Expérience aléatoire.
Nouveau programme de 3ème Probabilités Document de travail – Académie de Rouen
Enseigner l’arithmétique en série L Réflexions sur les contenus et les exigences.
Cours COMPOSANTES DES VECTEURS Dimitri Zuchowski et Marc-Élie Lapointe.
Centre de Formation des Apprentis FLORENTIN MOURET AVIGNON.
Chapitre 8 : Fluctuation d’échantillonnage.
Calcul de probabilités
PROBABILITÉS.
Application des lois de probabilité -Variable aléatoire discrète-
Techniques quantitatives Cours 5
La ProbabilitÉ.
Chapitre 2 : Principe de la dynamique
Dimitri Zuchowski et Marc-Élie Lapointe
Faculté de Sciences Sociales de Strasbourg – L1S – 2017 Séance 3
Algorithme et programmation
1.3 COORDONNÉES DES POINTS
Lois fondamentales de l'algèbre de Boole
Premier objectif : définir un acide et une base :
Probabilités.
Les opérations sur les nombres
I Définition chapitre 1 Les Matrices.
Thème 2 : Lois et modèles.
Chapitre 13 : Echantillonnage
chapitre 1 : Généralités sur les Fonctions.
Dimitri Zuchowski et Marc-Élie Lapointe
Principes de programmation (suite)
Simuler des probabilités
2°9 lycée Beauregard à Montbrison
Fonctions logiques et algèbre booléenne
Hasard et Probabilités, P. Thompson
Plans d’expériences: Plans factoriels
Les Plans d’expériences: Plans Factoriels
Exercice 1 : On donne le tableau de valeurs suivant :
Codification et Représentation de l’information
2.2 Probabilité conditionnelle
La méthode du simplexe. 1) Algorithme du simplexe  Cet algorithme permet de déterminer la solution optimale, si elle existe, d’un problème de programmation.
Notion De Gestion De Bases De Données
3.5 Lois continues 1 cours 16.
Troisième Chapitre 9: Les Probabilités
1.2 dénombrement cours 2.
Lois de probabilités Intervalle de fluctuation
Module: Logique Mathématique. SOMMAIRE 1- Notions d’ensembles 2- Constructions d’ensembles 3- Cardinal d’ensembles 4- Relations d’ensembles ordonnées.
DATA WEARHOUSE 1ère année LA: Technologies systèmes d’information
LES PROBABILITÉS Par : R . BOULAHBAL 2016 Free Powerpoint Templates.
LOG770 Annexe A Éléments de probabilité
Tâches Tâches antérieures Durée A -- 6 B 5 C 4 D E F A D G E F Niveaux
Chapitre 8 : Fluctuation d’échantillonnage.
Eléments de la Théorie des Probabilités
Programme financé par l’Union européenne
« Dessine-moi un vecteur »
A. Zemmari SDRP & MA Modèles et Approches Formels pour les Systèmes Distribués -Algorithmes distribués probabilistes.
Cycle, Cocycle, Arbre et Arborescence
Statistique descriptive Bivariée
Lois de Probabilité Discrètes
Lois de Probabilité Discrètes
Élections locales probabilistes
Solution de Traçabilité AgroAlimentaire
STAT D103 Esteban Callejas Perez H.4.145
Les nombres complexes Saison 1 - Épisode 2. Les nombres complexes Saison 1 - Épisode 2.
Présentation 4 : Sondage stratifié
Bijections Une brève histoire de l’infini.
LE TORSEUR STATIQUE 1) Définition 2) Notation 3) Deux cas particuliers
Présentation des nouveaux programmes de mathématiques de première des séries technologiques Jessica Parsis.
Ahmed katif La lumière et les couleurs La dispersion de la lumière -l’arc- en- ciel est un phénomène naturel qu’on observe parfois dans le ciel ? Comment.
Quelques propriétés de l’air et ses constituants
Elections locales probabilistes
بسم الله الرحمن الرحيم. mise en situation difficulté : Vous voulez transmettre une information un ami qui se trouve très loin de toi et ne peut vous entendre,
Dérivation – Fonctions cosinus et sinus
Transcription de la présentation:

Eléments de la Théorie des Probabilités STAT D103 Esteban Callejas Perez ecalleja@ulb.ac.be H.4.145

L’Ensemble Fondamental Ω d’une expérience aléatoire: Est l’ensemble de tous les résultats possibles de cette expérience aléatoire. Un Evénement E d’une expérience aléatoire: Est un des résultats possibles de l’expérience aléatoire. Evénement élémentaire: ne contient qu’un seul élément de Ω. Evénement certain: événement qui se réalise toujours. Evénement Impossible: événement qui ne se réalise jamais (∅). ℱ est ensemble de tous les événements associés à une expérience aléatoire Si Ω est fini, ℱ correspond à l’ensemble des parties de Ω,désigné par 𝒫 Ω . Si Ω est infini, ℱ contient tous les événements élémentaires, l’événement certain (Ω) et l’événement impossible (∅), ainsi que tous les événements qu’on peut obtenir par les opérations suivants:

Soient 𝐸, 𝐸 1 , 𝐸 2 , ⋯ des événements de ℱ. Egalité: Deux événements 𝐸 1 et 𝐸 2 sont égaux ( 𝐸 1 = 𝐸 2 ) s’ils correspondent au même sous-ensemble de Ω. Implication: La réalisation de 𝐸 1 implique automatiquement celle de 𝐸 2 ( 𝐸 1 ⊂ 𝐸 2 ). Intersection: Les réalisations 𝐸 1 et 𝐸 2 se réalisent conjointement ( 𝐸 1 ∩ 𝐸 2 ). Si 𝐸 1 ∩ 𝐸 2 =∅ alors 𝐸 1 et 𝐸 2 sont mutuellement exclusifs.

Union: Ou moins un de deux événements 𝐸 1 ou 𝐸 2 se réalise ( 𝐸 1 ∪ 𝐸 2 ). Exclusion: L’élément 𝐸 1 se réalise sans que l’élément 𝐸 2 se réalise ( 𝐸 1 \ 𝐸 2 ). Négation (complémentarité): L’élément 𝐸 ne se réalise pas ( 𝐸 =Ω\E).

Définition axiomatique de la Probabilité Soit Ω l’ensemble fondamental associeé a une expérience aléatoire, et ℱ la famille des événments construite à partir de Ω. La probabilité 𝑃 ⋅ est une fonction: ℱ ⟼ ℝ 𝐸 → 𝑃 𝐸 Qui satisfait aux trois axioms suiants: Axiome 1: 𝑃 𝐸 ≥0 pour tout 𝐸∈ℱ. Axiome 2: 𝑃 Ω =1. Axiome 3: Si 𝐸 1 , 𝐸 2 , 𝐸 3 , ⋯ sont mutuellement exclusifs ( 𝐸 𝑖 ∩ 𝐸 𝑗 =∅, ∀𝑖≠𝑗), alors: 𝑃 𝐸 1 ∪ 𝐸 2 ∪ 𝐸 3 ∪⋯ =𝑃 𝐸 1 +𝑃 𝐸 2 +𝑃 𝐸 3 +⋯

Proprieté 1: Si un événement 𝐸 est partitionné en 𝑚 événements 𝐸 1 , 𝐸 2 , ⋯, 𝐸 𝑚 (𝐸= 𝐸 1 ∪ 𝐸 2 ∪⋯∪ 𝐸 𝑚 et 𝐸 𝑖 ∩ 𝐸 𝑗 ≠∅ ∀𝑖≠𝑗), alors: 𝑃 𝐸 =𝑃 𝐸 1 +𝑃 𝐸 1 +⋯+𝑃 𝐸 𝑚 Proprieté 2: Si la réalisation de l’événement 𝐸 1 implique automatiquement la réalisation de l’événement 𝐸 2 ( 𝐸 1 ∩ 𝐸 2 ) , alors: 𝑃 𝐸 1 ≤𝑃 𝐸 2 Proprieté 3: 𝑃 𝐸 ≤1 pour tout événement 𝐸.

Proprieté 4: La probabilité de l’événement complémentaire a 𝐸 (𝑃 𝐸 ) est égale a 1 moins la probabilité de l’événement 𝐸. 𝑃 𝐸 =1−𝑃 𝐸 Proprieté 5: Le complementaire de Ω est ∅. 𝑃 ∅ =1−𝑃 Ω =1−1=0 Proprieté 6: Si 𝐸 1 et 𝐸 2 sont deux événements quelconques: 𝑃 𝐸 1 \ E 2 = 𝑃 𝐸 1 −𝑃 𝐸 1 ∩ 𝐸 2 𝑃 𝐸 2 \ E 1 = 𝑃 𝐸 2 −𝑃 𝐸 2 ∩ 𝐸 1

Loi d’addition: Si 𝐴 et 𝐵 sont deux événements quelconques (A,𝐵∈ℱ): 𝑃 𝐴∪𝐵 =𝑃 𝐴 +𝑃 𝐵 −𝑃 𝐴∩𝐵 Si 𝐴 et 𝐵 sont mutuellement exclusifs (𝐴∪𝐵=∅), alors: 𝑃 𝐴∪𝐵 =𝑃 𝐴 +𝑃 𝐵 Probabilité conditionnelle: Si 𝐴 et 𝐵 sont deux événements tells que 𝑃 𝐴 ≠0 et 𝑃 𝐵 ≠0, alors: 𝑃 𝐴 𝐵 = 𝑃 𝐴∩𝐵 𝑃 𝐵 et 𝑃 𝐵 𝐴 = 𝑃 𝐴∩𝐵 𝑃 𝐴 où 𝑃 𝐴 𝐵 probabilité que 𝐴 se realise étant donné que 𝐵 est réalisé. 𝑃 𝐵 𝐴 probabilité que 𝐴 se realise étant donné que 𝐵 est réalisé. Remarque: 𝑃 𝐵|𝐵 = 𝑃 𝐵∩𝐵 𝑃 𝐵 = 𝑃 𝐵 𝑃 𝐵 =1

Loi de multiplication: Si 𝐴 et 𝐵 sont deux événements tels que 𝑃 𝐴 ≠0 et 𝑃 𝐵 ≠0, alors: 𝑃 𝐵 𝐴 = 𝑃 𝐴∩𝐵 𝑃 𝐴 ⇒ 𝑃 𝐴∩𝐵 =𝑃 𝐴 ⋅𝑃 𝐵|𝐴 𝑃 𝐴 𝐵 = 𝑃 𝐴∩𝐵 𝑃 𝐵 ⇒ 𝑃 𝐴∩𝐵 =𝑃 𝐵 ⋅𝑃 𝐴|𝐵 En général: 𝑃 𝐴∩𝐵∩𝐶 =𝑃 𝐴 ⋅𝑃 𝐵|𝐴 ⋅𝑃 𝐶|𝐴∩𝐵 Indépendance (stochastique): Si 𝐴 et 𝐵 sont deux événements tells que 𝑃 𝐴 ≠0 et 𝑃 𝐵 ≠0, alors: 𝐴 est indépendant de 𝐵 si et seulement si 𝑃 𝐴|𝐵 =𝑃 𝐴 . 𝐵 est indépendant de 𝐴 si et seulement si 𝑃 𝐵|𝐴 =𝑃 𝐵 . En général: Deux événements 𝐴 et 𝐵 sont indépendants si et seulement si: 𝑃 𝐴∩𝐵 =𝑃 𝐴 ⋅𝑃 𝐵

Indépendance (stochastique): Si 𝐴, 𝐵 et 𝐶 sont trois événements tels que 𝑃 𝐴 ≠0, 𝑃 𝐵 ≠0 et 𝑃 𝐶 ≠0, alors: Les événements 𝐴, 𝐵 et 𝐶 sont (stochastiquement) indépendants si et seulement si: 𝑃 𝐴∩𝐵 = 𝑃 𝐴 ⋅𝑃 𝐵 𝑃 𝐴∩𝐶 = 𝑃 𝐴 ⋅𝑃 𝐶 𝑃 𝐵∩𝐶 = 𝑃 𝐵 ⋅𝑃 𝐶 𝑃 𝐴∩𝐵∩𝐶 = 𝑃 𝐴 ⋅𝑃 𝐵 ⋅𝑃 𝐶

Théorème des probabilités totales: Si 𝐸 1 , 𝐸 2 ,⋯,𝐸_𝑚 constitue une partition de Ω ( 𝐸 1 ∪ 𝐸 2 ∪⋯∪ 𝐸 𝑚 et 𝐸 𝑖 ∩ 𝐸 𝑗 =∅ \foral 𝑖≠𝑗), et si 𝐴 est un événement quelconque de ℱ, alors: 𝑃 𝐴 = 𝑃 𝐴∩ 𝐸 1 +𝑃 𝐴∩ 𝐸 2 +⋯+𝑃 𝐴∩ 𝐸 𝑚 = 𝑃 𝐸 1 𝑃 𝐴| 𝐸 1 +𝑃 𝐸 2 𝑃 𝐴| 𝐸 2 +⋯+𝑃 𝐸 𝑚 𝑃 𝐴| 𝐸 𝑚 = 𝑗=1 𝑚 𝑃 𝐸 𝑗 𝑃 𝐴| 𝐸 𝑗