Traitement d’images : concepts fondamentaux

Slides:



Advertisements
Présentations similaires
La Méthode de Simplexe Standardisation
Advertisements

Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts avancés
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts avancés
Calcul géométrique avec des données incertaines
Cours de morphologie mathématique
Introduction à l’Algorithmique
Calculs de complexité d'algorithmes
1 Réunion biblio 13/12/00 Support Vectors Présentation générale SSS Maintaining Algorithm.
2. Echantillonnage et interpolation des signaux vidéo

A.Faÿ 1 Recherche opérationnelle Résumé de cours.
Traitement d’images : briques de base S. Le Hégarat
Introduction à limagerie numérique Acquisition, Caractéristiques, Espaces couleurs, Résolution.
Encadrés: Chapitre 13 Distances
Génération de colonnes
Structures Pyramidales Luc Brun L.E.R.I., Reims and Walter Kropatsch Vienna Univ. of Technology, Austria.
Application des algorithmes génétiques
Prétraitement de l’image
Algorithmes Branch & Bound
Réalisateur : PHAM TRONG TÔN Tuteur : Dr. NGUYEN DINH THUC
ASI 3 Méthodes numériques pour l’ingénieur
Le filtrage d’images.
Chapitre 2 : Filtrage Professeur. Mohammed Talibi Alaoui
Sylvie Alayrangues Jacques-Olivier Lachaud
Opérateurs morphologiques
Fronts d’onde 3-D Introduction ; Fronts d’onde Trame cuboctaèdrique
Construction de modèles visuels
Traitements d'images et Vision par ordinateur
Rappel... Solution itérative de systèmes linéaires (suite et fin).
Traitements à base d’histogrammes Cours 6
Traitement d’images : concepts avancés
Rappel... Systèmes dynamiques: discrets; continus.
Traitement d’images : concepts fondamentaux
Génération d’un segment de droite
Projet Traitement d'images en C
PIF-6003 Sujets spéciaux en informatique I
Chapitre 4 : Morphologie Mathématique
Distance de BORGEFORS Et Applications
Calcul des groupes d'homologie d’objets discrets
Le filtrage d’images.
TRAITEMENT D’IMAGE SIF-1033.
TRAITEMENT D’IMAGE SIF-1033.
Préférences et fonctions d’utilité
Projet de session – SCG-67210
Projet Télédétection Vidéo Surveillance Deovan Thipphavanh – Mokrani Abdeslam – Naoui Saïd Master 2 Pro SIS / 2006.
Segmentation par analyse d’une image de gradient (ligne de partage des eaux) par fusion de régions dans un graphe par méthode variationnelle (Mumford.
Morphologie mathématique ensembliste
Electrostatique- Chap.2 CHAPITRE 2 CHAMP ELECTROSTATIQUE Objectif :
Module 4: Le filtrage d’images. Objectifs du filtrage.
Théorie du point fixe 1. Rappel Ensemble ordonné Majorant, Minorant
Notions préliminaires de géométrie discrète
Classification : objectifs
Extraction de segments pour la reconnaissance de symboles : Une approche robuste par Transformée de Hough Présenté par : Simon BERNARD Encadré par : Jean-Marc.
Modèles Mathématiques et représentation discrètes pour la description des images couleur Luc Brun.
Les réseaux de neurones à réservoir en traitement d’images
Institut de sciences et technologies Département d’informatique
Morphologie mathématique (cas fonctionnel)
Les réseaux de neurones à réservoir en traitement d’images
SIF1033 TRAITEMENT D’IMAGE
Mathématiques pour Informaticien I
Partie II : Segmentation
PIF-6003 Sujets spéciaux en informatique I
Exemple et critique d’un système de vision simple Patrick Hébert (dernière révision septembre 2008) Référence complémentaire: Shapiro et Stockman: chap.
Filtrage des images.
Transcription de la présentation:

Traitement d’images : concepts fondamentaux Définitions fondamentales et prétraitements :  Information représentée par un pixel, Manipulation d’histogrammes : égalisation, Filtrage passe-bas. Introduction à la morphologie mathématique (cas binaire) :  Erosion, dilatation, ouverture et fermeture binaires, Reconstruction géodésique, étiquetage en composantes connexes, Squelette. Introduction à la classification (cas pixelique) : algorithme des k-ppv, des c-moyennes critères bayésiens : MV, MAP.

Introduction à la morphologie mathématique Traitement non linéaire de l’information Analyse morphologique : extraction des informations à partir de tests Exemples de problèmes : Repose sur la théorie des ensembles, des treillis complets, … – s’applique aux ensembles, aux fonctions, … Comment séparer 2 composantes ? Comment éliminer le bruit ? Comment étiqueter différemment 2 formes connexes ? Comment comparer 2 formes ?

Définition: 1 treillis est 1 ensemble ordonné (E,) tel que toute partie de E admette 1 borne supérieure et 1 borne inférieure  : réflexive (xE, xx), antisymétrique ((x,y)E2, xy et yx  x=y), transitive ((x,y,z)E3, xy et yz  xz ) Exemple de treillis: plus petit des majorants plus grand des minorants ensembliste éléments parties de S relation d’ordre inclusion borne supérieure union borne inférieure intersection involution complémentaire

Opérateurs de MM : fondements mathématiques principes fondamentaux Compatibilité avec les translations Compatibilité avec les homothéties Localité Semi-continuité propriétés Croissance Extensivité / anti-extensivité Idempotence Dualité Indépendance par rapport à l’origine de l’espace: t, y(f+t)=y(f)+t Indépendance par rapport au paramètre d’échelle: l, y(lf)=ly(f)  E’ borné,  E borné / y(f)E’=y(fE)E’ A,B AB  y(A)  y(B) Extensivité:  A, Ay(A) y(y(.))=y(.) y et f duales :

Erosion / dilatation : définitions (1) Élément structurant B  relations de l’objet X avec l’élément (taille, forme données) Addition de Minkowski : Union des translatés de X par chaque point de B propriétés : commutative, associative, croissante, élément neutre Soustraction de Minkowski : Intersection des translatés de X par chaque point de B propriétés : non commutative, associative, croissante, élément neutre Ө

Erosion / dilatation : définitions (2) Dilatation (binaire) : lieu géométr. des points x tels que Bx intersecte X Erosion (binaire) :  lieu géométr. des points x tels que Bx soit inclus dans X

Erosion / dilatation : définitions (2) Dilatation (binaire) : lieu géométr. des points x tels que Bx intersecte X Erosion (binaire) :  lieu géométr. des points x tels que Bx soit inclus X

Erosion / dilatation : propriétés (1) Croissance par rapport à X En effet : Extensivité / anti-extensivité (si centre de B inclus dans B) Croissance / décroissance par rapport à B

Erosion / dilatation : propriétés (2) Commutations en effet : Adjonction  La partie de Bz qui n’intersecte pas avec X est dans le complémentaire de Bz’  quand se restreint à BzBz’ on ‘est dans’ X

Erosion / dilatation : algorithmes (1) Cas général (binaire) : En chaque pixel z de l’image examiner la relation entre l’élément struct. Bz et l’objet X Dilatation: pour i[1,#lignes] // boucle sur les lignes pour j[1,#colonnes] { // boucle sur les colonnes initializer y à 0 pour i’[iBmin,iBmax] // origine de B en 0  B inclus dans [iBmin,iBmax] [jBmin,jBmax] pour j’[jBmin,jBmax] si (y nul et ima(i+i’,j+j’) non nul et B(i’,j’) non nul) alors y  1 ima_dilate(i,j)  y } Erosion: initializer y à 1 si (y non nul et ima(i+i’,j+j’) nul et B(i’,j’) non nul) alors y  0 ima_erode(i,j)  y

Erosion / dilatation : algorithmes (2) Exploitation de l’associativité de la dilatation / érosion Cas d’un élément B qui est le résultat de l’addition de Minkovski de et avec B1 (B à la taille élémentaire) : Itérer la dilatation (érosion) par B1 Cas d’un élément convexe : Dilatations (érosions) successives par 2 segments Cas d’un élément structurant ‘boule’ : Seuillage de la transformée en distance de l’image binaire ou de son complémentaire

Dilatation binaire : exemples dB4(X) , B4: dB2(X), B2: dB2(dB2(X)) dB2(dB2(dB2(X))) dB0(X), B0: dB0(dB0(X)) dB0(dB0(dB0(X))) dB1(dB0(dB0(dB0(X)))), B1: dB1(dB1(dB0 (dB0(dB0(X))))) dB1(dB1(dB1(dB0 (dB0(dB0(X)))))) Dist1 4 3 4 3 0 3 11 11 11 7 5 7 11 5 0 5 7 5 7 11 Dist1 Dist1,5 Dist1,5 Dist2 Dist2 Dist2,5 Dist2,5

Érosion binaire : exemples eB4(X) , B4: eB2(X), B2: eB2(eB2(X)) eB2(eB2(eB2(X))) eB0(X), B0: eB0(eB0(X)) eB0(eB0(eB0(X))) eB1(eB0(eB0(eB0(X)))), B1: eB1(eB1(eB0 (eB0(eB0(X))))) eB1(eB1(eB1(eB0 (eB0(eB0(X)))))) Dist1 Dist1,5 4 3 4 3 0 3 11 11 11 7 5 7 11 5 0 5 7 5 7 11 Dist2 Dist2,5

Ouverture / fermeture : cas binaire Propriétés Croissance / X trivial car eB et dB  / X Extensivité / anti-extensivité propriété d’adjonction  car  car (Dé)croissance / B

Ouverture / fermeture : propriétés Idempotence Min-max : L’ouverture de X est le plus petit X’ de même érodé que X La fermeture de X est le plus grand X’ de même dilaté que X

Profil morphologique : définition (gl)l≥0 une ‘granulométrie’ et (jl)l≥0 l’anti- granulométrie associée Fonction de distribution granulométrique m mesure bornée sur le treillis (e.g. aire#pixels) Xl = gl(X) et X-l = jl(X)  FX(l)=1-m(Xl)/m(X0) Spectre granulométrique fX(l)= F’X(l) (gl)l0 / 0ll’  gl’gl=glgl’=gl’

Profil morphologique : application à l’analyse de texture X1=g(X0) X2=g(X1) X3=g(X2) X4=g(X3) X-1=j(X0) X-3=j(X-2) X-4 X-5 X-6 X-7 X-8

Dilatation / Erosion géodésique binaire Boules géodésiques Quand l , les boules géodésiques progressent comme le front d’une onde émise depuis z dans le milieu X Dilatation géodésique de taille l de Y dans X (YBl)X Erosion géodésique X eX(Y1) Y1 Y2 e(Y2)X

Reconstruction géodésique binaire Application : extraction de composantes connexes à partir de marqueurs Principe : à partir d’un point de la composante, on reconstruit toute la composante Méthode : dilatation géodésique dans X

Reconstruction géodésique : algorithme (cas binaire) Éviter de réitérer dilatation jusqu’au diamètre des plus grandes composantes connexes Cas efficace : utilisation d’une pile des pixels de l’image à traiter : Initialisation de la pile avec les pixels de XY Tant qu’il reste des éléments dans la pile : Extraire un élément (pixel) de la pile Le traiter labelisation de la composante connexe dans l’image résultat Calcul de ses voisins (dilatation par B) Ajout dans la pile (si nécessaire) des voisins situés dans X

Reconstruction géodésique : exemple Itération contenu de la pile 1 2 3 4 5 6 7 0 1 2 3 4 5 1 (2,1) 2 (1,1) (3,1) 3 (3,1) (1,2) 4 (1,2) (3,2) (4,1) 5 (3,2) (4,1) (1,3) 6 (4,1) (1,3) (3,3) 7 (1,3) (3,3) (5,1) 8 (3,3) (5,1) (2,3) (1,4) 9 (5,1) (2,3) (1,4) (4,3) (3,4) 10 (2,3) (1,4) (4,3) (3,4) (5,2) 11 (1,4) (4,3) (3,4) (5,2) (2,4) 12 (4,3) (3,4) (5,2) (2,4) (5,3) (4,4) 13 (3,4) (5,2) (2,4) (5,3) (4,4) 14 (5,2) (2,4) (5,3) (4,4) 15 (2,4) (5,3) (4,4) 16 (5,3) (4,4) (5,4) 17 (4,4) (5,4) 18 (5,4)

Exemples d’application (1) Reconstruction géodésique à partir de Y X Algorithme : k=0; Pour chaque pixel s de X : si xs et !zs : - calcul de EBX({s}) - k++ - t  EBX({s}), zt=k # composantes connexes = k Etiquettage de composantes connexes

Exemples d’application (2) Filtrage par Erosion-Reconstruction (ne modifie pas les contours des objets restants  Erosion-Dilatation)  Erosion de X puis reconstruction de eB(X) dans X Suppression d’objets touchant le bord de l’image  Différence entre X et la reconstruction du bord dans X  - =

Exemples d’application (3) Bouchage de trous  Complément de la reconstruction dans Xc d’un ensemble qui n’intersecte pas X Seuillage avec hystérésis  Reconstruction des points au-dessus du seuil haut dans l’ensemble des points au-dessus du seuil bas.   et

Erodé ultime : définition / algorithme Cas général (binaire) Ensemble des composantes connexes de X disparaissant à l’itération suivante lors d’une séquence d’érosions par un élément structurant élémentaire B1  Pour chaque pixel (non déjà dans érodé ultime) disparaissant à l’itération t, calculer la composante connexe à t-1 et tester si tous les pixels ont effectivement disparus à t. Cas d’un élément structurant disque Ensemble des maxima régionaux de la fonction distance de X à son complémentaire Algorithme : Calcul de l’image des distances Calculer l’ensemble des maxima locaux Pour chaque maximum local (xsxt, tVs) non déjà traité : Reconstitution géodésique de la composante connexe à xs conditionnellement à l’image des valeurs supérieures à xs  CC(xs) Si xtCC(xs): xt>xs, alors marquer comme traités les maxima locaux qui appartiennent à CC(xs) Sinon, alors xs est un maximum régional et CC(xs)  érodé ultime

Erodé ultime : exemple Distance 4-connexité Distances 8-connexité, respectivement masque (1,0), (4,3,0) et (11,7,5,0) Érosions successives par B

Transformation en ‘tout ou rien’ : cas binaire Définition :  teste l’appartenance de certains voisins à X ET de certains autres à Xc Notation des éléments structurants : noir = objet (1), blanc = fond (0), gris = quelconque Ex. d’application : détection de coins (saillants) UL UR LL LR Exemple :

Calcul de l’enveloppe convexe Rappel : Déf. L'enveloppe convexe d'un objet O est l’ensemble convexe (Ec /  (A,B) 2 points de Ec, [A,B] est entièrement contenu dans Ec) le plus petit parmi ceux incluant O.  épaississement (ajout des points sélectionnés) par la transformation en Tout ou Rien suivante : 12 elts struct. Exemple :  avec 1 elt. struct. 33, il n’est pas possible de gérer des pentes autres que {0,/2,/4,3/4}

Squelette morphologique : définition Exemples de propriétés souhaitées : Préservation de la géométrie, de la topologie Invariance aux translations, rotations, homothéties Réversibilité, continuité, épaisseur nulle Squelette morphologique euclidien (cas continu) U des centres des boules maximales (contenues ds X) Cas discret : U des résidus d’ouverture des érodés successifs :  Pb : ne préserve pas la topologie Même forme, respect des parties allongées, etc… Mêmes nombres de composantes connexes, de trous. La forme peut être retrouvée connaissant le squelette et la taille des érosions (p.e.). Une ‘petite’ variation de forme engendre une petite variation du squelette. Épaisseur nulle, réversible Mais : ne préserve pas la topologie, ex : non continu, ex : mais

Homotopie discrète et simplicité Définition : F fct de R2  R2 préserve la topologie si  A ouvert, A et F(A) sont homotopes Cas discret : A’ K-homotope à A   2 bijections préservant la relation d’entourage (au sens du théorème de Jordan) entre : (i) les ensembles des K-cc (K{4,8}) de A et de A’, (ii) les ensembles des K’-cc (K’=12-K) de Ac et de (A’)c  pour A’A (i) toute K-cc (K{4,8}) de A contient exactement 1 K-cc de A’ et (ii) toute K’-cc (K’=12-K) de (A’)c contient exactement 1 K’-cc de Ac Définition : x point K-simple dans X  X-{x} homotope à X  x a au moins 1 K’-voisin dans Xc et x est K-voisin d’1 seule K-cc de X  se calcule en examinant les 8 voisins

Homotopie discrète et simplicité Propriété : x est K-simple  NKX(x)=1 Retrait des points K-simples : séquentiel  perte des propriétés métriques, parallèle  risque de perte de l’homotopie solution : ‘¼ parallèle’ : on ne retire ensemble que les points qui ont 1 voisin ‘Nord’ (resp. ‘Est’, ‘Sud’, ‘Ouest’) dans Xc Rq : noyau homotopique ne préserve pas la forme de X  utilisation de ‘points d’ancrage’ x3 x1 x2 x4 x0,x8 x x5 x7 x6 Une réunion de points K-simples n’est pas nécessairement un ensemble simple, ex : x et y sont 8-simples mais pas {x,y} x y

Caractérisation géométrique des points K-simples Définition : transformation ‘tout ou rien’  teste l’appartenance de certains voisins à X ET de certains autres à Xc Définition : amincissement (resp. épaississement) de X  enlever (resp. ajouter) des points de X sélectionnés par 1 transformation en tout ou rien. Propriété : 1 amincissement (épaississement) est homotopique si l’inversion de couleur du point central ne modifie pas la topologie. Ex.   préserve topo Exemples d’élément structurant : Lskel Mskel Ebardage

Squelette morphologique : algorithme Rq : noyau homotopique ne préserve pas la forme de X  utilisation de ‘points d’ancrage’ , e.g. maxima locaux de la distance Algorithme préservant la topologie : Initialiser S(X) à X Répéter (jusqu’à avoir traité tous les points de X) : Soit ESd les points de S(X) ayant un voisin immédiat dans (S(X))c dans la direction ‘Nord’ (resp. ‘Est’, ‘Sud’, ‘Ouest’) Déterminer LK-s l’ensemble (parmi les points de ESd) des points ‘K-simples’ (en K connexité) Retirer simultanément de S(X) tous les points de LK-s (sauf points d’ancrage) Changer la direction considérée (N, E, S, ou O) Informatiquement, utilisation de ‘piles’ de pixels

1 1 2 1 2 1 2 2 1 1 2 2 1

Exemple : X 4-connexité Itérations 0, 1, 2 Itérations 3, 4, 5

Squelette par zones d’influence (SKIZ) Définition : Soit X compact de R2, la zone d’influence d’une composante connexe Xi de X est l’ens. des points plus près de Xi que de tout autre composante Le SKIZ est la frontière des zones d’influence Calcul du SKIZ : 1. Amincissement du fond par Lskel 2. Puis ébardage du résultat de 1. Ex :

Exercices (I) Proposer une ou plusieurs solutions pour les problèmes cités en introduction : Comment éliminer le bruit ? Comment séparer ces 2 composantes ? Comment comparer 2 formes ? Comment étiqueter différemment 2 formes connexes ?

Exercices (II) Démontrer les propriétés de commutation des opérateurs dilatation et érosion binaires. (Utiliser les définitions de ces opérateurs) Démontrer les propriétés de croissance / décroissance et extensivité / anti-extensivité des opérateurs ouverture et fermeture binaires. (Utiliser les propriétés des opérateurs dilatation et érosion, notamment l’adjonction pour démontrer l’extensivité / anti-extensivité)

Exercices (II) : correction Commutation des opérateurs dilatation et érosion. Propriétés des ouvertures / fermetures binaires Croissance / X : trivial car eB et dB  / X Extensivité / anti-extensivité propriété d’adjonction  car  car (Dé)croissance / B

Exercices (III) Soit l’image suivante : On cherche à compter les différents types de cellules et leur proportions respectives. Proposez une solution, décrivez le synoptique de l’algorithme à mettre en œuvre et les fonctions à développer (notamment les entrées / sorties), puis pour chacune d’elles le pseudo-code.

Exercices (III) : correction Image niveaux de gris Image binaire Image binaire filtrée Éliminer les objets touchant le bord Seuillage Image segmentée des particules Détection des différentes particules Image binaire filtrée Éliminer le bruit (petites particules) Image des squelettes des particules Squelette Détermination des paramètres pour chaque particule Liste des objets avec caractérist. Liste des objets avec étiquettes Classification

Bibliographie H. Maître, Le traitement des images, Hermès éditions. J.-P. Cocquerez & S. Philipp, Analyse d’images : filtrage et segmentation, Masson éditions. S. Bres, J.-M. Jolion & F. Lebourgeois, Traitement et analyse des images numériques, Hermès éditions.