Traitement d’images : concepts fondamentaux

Slides:



Advertisements
Présentations similaires
Introduction à l’analyse
Advertisements

ANOVA à un facteur (Rehailia)
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts avancés
Distance inter-locuteur
Thomas G. Dietterich Approximate Statistical Tests for Comparing
Classification et prédiction
Classification et prédiction
Apprentissage supervisé à partir de séquences
Champs de Markov en Vision par Ordinateur
Champs de Markov en Vision par Ordinateur
Regroupement (clustering)
RECONNAISSANCE DE FORMES
Test statistique : principe
Comparaison de deux moyennes observées
Les TESTS STATISTIQUES
Les K plus proches voisins
Nombre de sujets nécessaires en recherche clinique
Les TESTS STATISTIQUES
3. Analyse et estimation du mouvement dans la vidéo
Optimisation du portefeuille clients d’EDF suivant des modèles de type Markowitz DALLAGI Anes.
Quelques filtres lisseurs de base (I)
variable aléatoire Discrète
Acelf septembre Quelles sont les occasions, au quotidien, où on fait appelle à la technologie? 2:001:591:581:571:561:551:541:531:521:511:501:491:481:471:461:451:441:431:421:411:401:391:381:371:361:351:341:331:321:311:301:291:281:271:261:251:241:231:
Application des algorithmes génétiques
Zone de rejet et scoring
RECONNAISSANCE DE FORMES
Résolution d’une équation du 2ème degré ax² + bx + c = 0
Classification Multi Source En Intégrant La Texture
Pourquoi les réseaux de neurones de type « perceptron multicouche » conviennent-ils à l’apprentissage Stéphane Canu, INSA de Rouen , PSI André Elisseeff,
Applications du perceptron multicouche
Décodage des informations
Cours Corporate finance Eléments de théorie du portefeuille Le Medaf
Méthode des k plus proches voisins
Chapitre 1 NOMBRES RELATIFS 1) Multiplication 2) Division 3) Équation.
Groupe 1: Classes de même intervalle
DEA Perception et Traitement de l’Information
Construction de modèles visuels
RECONNAISSANCE DE FORMES
DEA Perception et Traitement de l’Information
Traitement d’images : concepts fondamentaux
1.Un rang de données multicolores 2. Deux permutations des n premiers entiers 3. b permutations des k premiers entiers 4. Choix de n points dans [0,1]
II- L’algorithme du recuit simulé (pseudo-code)
Chapitre 4 : Morphologie Mathématique
Mise en oeuvre des MMCs L'utilisation des MMCs en reconnaissance des formes s'effectue en trois étapes : définition de la topologie de la chaîne de Markov,
1 La détection de gènes impliqués dans les maladies multifactorielles Marie-Pierre Etienne ENGREF Laboratoire GRESE Statistique et Génome.
Serrure biométrique Reconnaissance dempreintes digitales Raphaël FROMONT – Pascal GRIMAUD – Nicolas MUNOZ Tuteur : M. Patrick ISOARDI.
Programmation dynamique
TRAITEMENT D’IMAGE SIF-1033.
Cours #9 Segmentation Découverte 4- Segmentation Introduction
Filtrage de Kalman et aperçu probabiliste
Apprentissage par arbre de décision
MAXIMISER les RESULTATS
Introduction à la reconnaissance:
1 - Programme de Seconde (juin 2009) Statistique et probabilités
Projet Télédétection Vidéo Surveillance Deovan Thipphavanh – Mokrani Abdeslam – Naoui Saïd Master 2 Pro SIS / 2006.
Classification : objectifs
Apparence globale 1 image = 1 vecteur Base apprentissage Rotation –capture les variabilités Troncature –Quelques coefficients Représentation linéaire Espace.
Fusion de paramètres en classification Parole/Musique Julie Mauclair – Equipe Parole Julien Pinquier – Equipe SAMoVA.
SIF1033 TRAITEMENT D’IMAGE
Méthode des moindres carrés (1)
Mathématiques pour Informaticien I
Rappel de statistiques
Partie II : Segmentation
Segmentation (2 ième partie) Références: Sonka et al: sections 6.2.6, 10.2 (10.6) Autres: chap Forsyth chap. 4 Ballard & Brown (pour GHT) Dernière.
Exemple et critique d’un système de vision simple Patrick Hébert (dernière révision septembre 2008) Référence complémentaire: Shapiro et Stockman: chap.
UED SIM – Département OLCI Année Arts & Métiers ParisTech CER ANGERS Probabilités et statistiques Cours n° 2.
Transcription de la présentation:

Traitement d’images : concepts fondamentaux Amélioration d’images Amélioration du contraste Filtrage passe-bas du bruit Morphologie mathématique cas d’images binaires : Erosion, dilatation, ouverture et fermeture binaires, reconstruction géodésique, étiquetage en composantes connexes, squelette Classification Cas pixelique, décision bayésienne, algorithme des k-moyennes Détection de contours Filtrage passe-haut, filtrage optimal, transformée de Hough

Classification : objectifs Mettre en évidence les similarités/ dissimilarités entre les ‘objets’ (e.g. pixels) Obtenir une représentation simplifiée (mais pertinente) des données originales Mettre sous un même label les objets ou pixels similaires  Définitions préalables Passer de l’espace des caractéristiques à celui des classes → règle : supervisée / non supervisée, paramétrique / non paramétrique, probabiliste / syntaxique / autre, avec rejet / sans rejet Espace des caractéristiques d (sS, ysd) Espace de décision = ensemble des classes W (sS, xsW), W = {wi, i[1,c] } Règle de décision ( = d(ys) ) Critère de performance numériques ou syntaxiques

Ex. de classification non paramétrique Classification k-ppv (plus proches voisins) On dispose d’un ensemble (de ‘référence’) d’objets déjà labelisés Pour chaque objet y à classifier, on estime ses k ppv selon la métrique de l’espace des caractéristiques, et on lui affecte le label majoritaire parmi ses k ppv Possibilité d’introduire un rejet (soit en distance, soit en ambiguïté) Très sensible à l’ensemble de référence Exemples : Euclidienne, Mahanolobis…  Possibilité de modélisation de loi complexes, de forme non nécessairement paramétrique (ex. en 2D disque et couronne) 1-ppv 3-ppv 5-ppv k-ppv (/24)

Connaissance des caractéristiques des classes Cas supervisé Connaissance a priori des caractéristiques des classes Apprentissage à partir d’objets déjà étiquetés (cas de données ‘complètes’) Cas non supervisé Définition d’un critère, ex. : - minimisation de la probabilité d’erreur - minimisation de l’inertie intra-classe  maximisation de l’inertie inter-classes Définition d’un algorithme d’optimisation

Equivalence minimisation de la dispersion intra-classe / maximisation de la dispersion inter-classes

Algorithme des c-moyennes (cas non sup.) Initialisation (itération t=0) : choix des centres initiaux (e.g. aléatoirement, répartis, échantillonnés) Répéter jusqu’à vérification du critère d’arrêt : t++ Labelisation des objets par la plus proche classe Mise à jour des centres par minimisation de l’erreur quadratique : Estimation du critère d’arrêt (e.g. test sur #ch(t) ) c=2 c=3 c=4 Remarques : # de classes a priori Dépendance à l’initialisation c=5

Variantes K-moyennes ISODATA Nuées dynamiques Regroupement ou division de classes  nouveaux paramètres : qN=#min objets par classe, qS seuil de division (division de la classe i si : maxj[1,d]sij > qS et #objets de la classe > 2qN+1 et Iintra(i) > Iintra), qC seuil de regroupement (regroupement des classes i et j si : dist(mi, mj)qC), #max itérations Nuées dynamiques Remplacement de la mesure de ‘distance’ par une mesure de ‘dissemblance’ dis(ys,wi)  minimiser classe i représentée par son ‘noyau’, e.g. centre ( K-moyennes), plusieurs ‘échantillons’ de référence zl l[1,p] (dis(.,.) = moyenne des distances de l’objet aux  zl)

Probabilités et mesure de l’information Probabilités fréquencistes / subjectivistes Physique stat. : répétition de phénomènes dans des ‘longues’ séquences  probabilité = passage à la limite d’une fréquence ≠ Modèle de connaissance a priori : degré de confiance relatif à un état de connaissance  probabilité = traduction numérique d’un état de connaissance Remarque : Quantité d’information et probabilités I = -log2(pi)  I ≥ 0, information d’autant plus importante que évènement inattendu (de faible probabilité)

Théorie bayésienne de la décision La théorie de la décision bayésienne repose sur la minimisation du ‘risque’ Soit Ct(x,x’) le coût associé à la décision de x’ alors que la réalisation de X était x La performance de l’estimateur x’ est mesurée par le risque de Bayes E[Ct(x,x’)] = Coût marginal (conditionnel à y) à minimiser Or x’P(x’/y)=1 et x’, P(x’/y)≥0, La règle qui minimise le coût moyen est donc celle telle que P(x’/y)=1 si et seulement si xP(x/y)Ct(x,x’)=1 P(x’/x,y)=P(x’/y) car décision selon y seul

Exemple Détection d’un véhicule dangereux (V) Décider V si et seulement si  Cas où a>b, on va décider plus facilement V que V en raison du coût plus fort d’une décision erronée en faveur de V que de V

Critère du Maximum A Posteriori Ct(x,x’) = 0, si x = x’ = 1, si x  x’

Cas d’un mélange de lois normales Exemples

Estimation de seuils (cas supervisé) Image = ensemble d’échantillons suivant une loi de distribution de paramètres déterminés par la classe ex. : distribution gaussienne Cas 1D (monocanal), si seuil de séparation des classes wi et wi+1, probabilité d’erreur associée : Maximum de vraisemblance :

Maximum de vraisemblance (suite) : Maximum A Posteriori : 

Lien c-moyennes / théorie bayésienne Maximum de vraisemblance sur des lois de paramètres qi (e.g. qi=(mi,Si)) inconnus : Cas d’échantillons indépendants : max. de la logvraisemblance d’où : (*) or : d’où (*)  Cas gaussien, Si connus, mi inconnus  résolution itérative K-moyennes : Si=Id i[1,c] et P(wi | ys,q) = 1 si wi = xs, = 0 sinon en effet : en effet : d’où :

Classification : exercices (I) Soit l’image à deux canaux suivante : Soit les pixels de référence suivants : label 1 : valeurs (1,03;2,19) (0,94;1,83) (0,59;2,04) label 2 : valeurs (2,08;0,89) (2,23;1,16) (1,96;1,14) Effectuer la classification au k-ppv. Commentez l’introduction d’un nouveau pixel de référence de label 1 et de valeurs (1,32;1,56) 2,48 1,68 2,24 2,55 2,36 1,64 2,20 1,42 1,96 2,43 1,95 1,61 2,23 1,55 2,50 1,57 1,65 1,92 2,34 1,41 2,45 1,50 2,28 2,53 2,11 2,08 2,27 1,63 1,32 0,80 1,20 0,59 0,94 1,36 1,59 1,03 1,14 1,26 1,04 0,83 1,10 1,09 0,64 1,52 0,40 0,55 1,30 1,33 0,95 0,50 1,13 0,70 0,76 1,16 0,56 1,60 1,06 1,33 0,67 0,55 1,32 0,80 1,42 1,44 1,23 0,51 0,95 0,81 1,04 1,03 1,16 0,43 0,45 1,35 0,91 1,21 1,55 1,53 0,60 1,18 0,83 0,89 0,58 1,14 1,47 1,06 1,56 1,52 1,78 2,04 1,79 2,50 1,72 1,83 2,19 2,14 1,76 2,49 1,46 1,41 1,80 2,31 1,68 2,54 1,62 2,44 2,41 2,40 2,56 2,48 2,35 2,28 1,95 1,51 2,24 2,53 1,50

Exercices (I) : correction

Classification : exercices (II) Sur l’image à deux canaux précédente : Déterminer les seuils de décision pour chacun des canaux si l’on suppose 2 classes gaussiennes de caractéristiques respectives : canal 1 : (m1,s1)=(2.0,0.38), (m2,s2)=(1.0,0.34) canal 2 : (m1,s1)=(1.0,0.36), (m2,s2)=(2.0,0.39) Effectuer la classification par seuillage. Effectuer la classification c-means pour c=2. Comparer avec les résultats précédents. Comparer avec la classification c-means pour c=3.

Exercices (II) : correction